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• Theory precision at colliders: 

• fixed-order vs. all-order perturbation theory 

• Factorisation theorems and semi-numerical resummation 

• Momentum-space resummation for transverse observables  

• Predictions for differential distributions at N3LL+NNLO at the LHC 

• Higgs production 

• Drell-Yan production 

• Conclusions
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‣ Fixed-order calculations of radiative corrections are formulated in a well established way 
(technically challenging, but well posed problem): 

‣ compute amplitudes at a given order 

‣ provide an effective subtraction of IRC divergences 

‣ compute any IRC-safe observable 

‣ All-order calculations are still at an earlier stage of evolution 

‣ Each different observable has its own type of sensitivity to IRC physics, it is hard to 
formulate a general method that works for all at a generic perturbative order 

‣ Higher-order resummations are therefore often formulated in an observable-dependent way, 
for few well-behaved collider observables 

Fixed-order vs. All-order
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‣ Factorisation of the amplitude is not enough as the all-order radiation is tangled by the 
observable 

‣ In order to perform an all-order calculation, one needs to break the observable too into hard, 
soft and collinear pieces. This can be done for some observables which treat the radiation rather 
inclusively 

‣ e.g. transverse momentum of a massive singlet

Factorisation of the observable
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‣ Factorisation is a powerful tool, but limited to observables that have a simple analytic 
expression in the relevant limits or do not mix soft and collinear radiation (e.g. jet 
rates) 

‣ Ultimately, we want to use the modern knowledge of IRC dynamics to make more 
accurate generators. At present a general framework to assess the accuracy of Parton 
Showers is missing 

‣ It is of primary importance to formulate a link between higher-order resummation 
and PS 

‣ Can we devise a formulation without a factorisation formula ? 

‣ recursive IRC safety: simple set of criteria for the observable that allows one to 
formulate the resummation at NLL for global observables without the need for an 
explicit factorisation. 

‣ Most of modern global observables fall into this category. 

‣ The method can be reformulated and extended at higher logarithmic orders

Eluding observable factorisation
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• Transverse and inclusive observables in colour-singlet production offer a clean experimental 
and theoretical environment for precision physics: 

• SM measurements (e.g. W, Z, photon,…): parton distributions, strong coupling, W mass,… 

• sensitivity to non-perturbative effects (hadronisation, intrinsic kt) only through 
transverse recoil 

• very little/no sensitivity to multi-parton interactions 

• BSM measurements/constraints (e.g. Higgs): light/heavy NP, Yukawa couplings,… 

• Theoretically interesting:  
• clean environment to test/calibrate exclusive generators against high perturbative 

orders 

• Two mechanisms compete in the            limit: 

• Sudakov (exponential) suppression when  

• Azimuthal cancellations (power suppression, dominant) when  

A case study: transverse observables
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pt ! 0

kti ⇠ pt ⌧ M

pt ⌧ kti ⌧ M

Can we build a more exclusive solution in momentum space ? 
See	also	work	in	[Ebert,	Tackmann	’16][Kang,	Lee,	Vaidya	’17]



• Write all-order cross section as (                                                      )
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Direct space: virtual corrections
V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

All-order	form	factor
e.g.	[Dixon,	Magnea,	Sterman	’08]

V(�B) =



• Write all-order cross section as (                                                      ) 

• Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes 
(resummation means iteration of lower-order amplitudes)
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• Write all-order cross section as (                                                      )
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V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Subtraction	of	the		
IRC	poles	and		
computation	of		
the	observable

All-order subtraction of IRC singularities
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• Subtraction of the IRC poles between                                              and          : 

• introduce a phase-space resolution scale (slicing parameter) 

• real correlated blocks with total transverse momentum          (unresolved) do not 
modify the observable, and can be ignored in the measurement function 

• compute unresolved reals and virtuals analytically in D dimensions (much easier 
than full observable) 

• compute resolved (reals only) in 4 dim. with           (MC events !)

V(�B)
1X

n=0

Z nY

i=1

[dki]|M(p̃1, p̃2, k1, . . . , kn)|2

All-order subtraction of IRC singularities

✏ ! 0

DGLAP	anomalous	dims
RGE	evolution	of		
coeff.	functions

kti < ✏kt1

Q0 = ✏kt1
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Physical picture: MC generator

...

. . .
. . . ...

...
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• This is, essentially, a quasi-exclusive generator with higher logarithmic accuracy

➡	e.g.	gluon	emissions	off	quark	legs



• CSS result recovered by simply transforming observable into b-space and 
integrating over radiation (see backup material) 

• Clear physical picture of the dynamics of azimuthal cancellations at small 
transverse momentum 

• Transition from exponential to a power-like suppression at small transverse 
momentum
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Small transverse momentum limit
➡	e.g.	Z	production	at	14	TeV
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‣ Implementation in a MC code (RadISH) up to N3LL 

‣ fully differential in Born kinematics 

‣ matching to fixed order cumulative distribution, e.g. Higgs: 

‣ Additive vs. multiplicative schemes
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Matching to Fixed Order
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‣ Implementation in a MC code (RadISH) up to N3LL 

‣ fully differential in Born kinematics
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An example: Higgs pT spectrum

RadISH+NNLOJET, 13 TeV, mH = 125 GeV
µR = µF = mH/2, Q = mH/2
PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations
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➡N3LL	 corrections	 moderate,	 reduction	 of	
uncertainty	at	small	pt	

➡Good	 agreement	 between	 different	 matching	
schemes,	 choose	 multiplicative	 solution	 at	
higher	order
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➡Important	 cancellations	 at	 mH/2	 (!),	
uncertainties	likely	underestimated	at	this	
scale	(long	known	problem)	

➡N3LL	corrections	amount	to	a	few-%	at	small	
pt,	 reduction	 of	 band	 below	 10	 GeV	
consistently	with	NLO	matching
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An example: Higgs pT spectrum
➡Simulation	of	fiducial	distributions	 
(e.g.	H	->	gamma	gamma)
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uncertainties with µR, µF, Q variations
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[fiducial volume from ATLAS 1407.4222]



An example: DY distributions (pT)

➡Matching	to	differential	NNLO	from	NNLOJET,	assume	N3LO	correction	
to	total	XS	is	zero	(i.e.	no	as3	constant	term	included)	

➡(sub-)percent	 precision	 in	 data,	 theory	 can	 reach	 ~3-5%	 accuracy…
Other	effects	important	(QED,	PDFs,	quark	masses,	hadronisation)	

➡Relevant	for	W-mass	studies 21

[Gehrmann-De	Ridder,	T.	Gehrmann,	E.W.N.	Glover,	A.	Huss,	T.A.	Morgan	’16]
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An example: DY distributions (phi*)

➡Similar	conclusions	for	angular	distributions
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Conclusions
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• Higher-order resummation can be formulated directly in momentum space 
without the need for a factorisation for the considered observable 

• The approach I briefly outlined is generalised to any rIRC safe observable in two-
scale problems 

• Systematic extension to any logarithmic order 

• Efficient implementation in a computer code: e.g. ARES, RadISH 

• Analytic resummation formulated in a language closer to parton showers 

• Differential distributions at N3LL+NNLO 

• Higgs: uncertainties in the 5%-10% range - consistent inclusion of quark-mass 
effects necessary at this order of accuracy (ongoing study) 

• DY: uncertainties reduced to ~5% across the whole spectrum - good agreement 
with data in the large-invariant mass bins (study low invariant mass in 
progress) 

• Improving on this requires the assessment of several effects: NP 
corrections, quark-mass corrections, QED, theory uncertainties in PDFs, …



Thank you for listening
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• Write all-order cross section as (                                                      ) 

• Recast all-order squared ME for n real emissions as iteration of correlated blocks 

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

e.g.	soft	radiation	(analogous	considerations	for	hard-collinear)

25

Squared amplitude decomposition
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In addition to this counting, 
requiring that the observable is 

recursively IRC safe allows one to 
construct a (simpler) all-order 

subtraction scheme

Squared amplitude decomposition



• One great simplification: choice of the resolution variable such that correlated 
blocks entering at          in the unresolved radiation only contribute at             in 
the resolved case 

• i.e. we can expand out the cutoff dependence and retain in the Radiator only 
the terms necessary to cancel the singularities in the resolved radiation

Monte Carlo formulation

...

. . .
. . . ...

...
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NkLL
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2 1
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• One great simplification: choice of the resolution variable such that correlated 
blocks entering at          in the unresolved radiation only contribute at             in 
the resolved case 

• i.e. we can expand out the cutoff dependence and retain in the Radiator only 
the terms necessary to cancel the singularities in the resolved radiation 

• Corrections beyond NLL are obtained as follows 

• Add subleading effects in the Sudakov radiator and constants 

• Correct a fixed number of the NLL resolved emissions: 

• only one at NNLL 

• two at N3LL 
• …

Monte Carlo formulation
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NkLL

R(✏kt1) = R(kt1) +R0(kt1) ln
1

✏
+

1

2
R00(kt1) ln

2 1

✏
+ . . .

R0(kti) = R0(kt1) +R00(kt1) ln
kt1
kti

+ . . .

Expansion	is	safe	since	 
in	the	resolved	

radiation	
kt1/kti ⇠ 1

Nk+1LL

[Banfi,	McAslan,	PM,	Zanderighi	’14-’16]
[Banfi,	PM,	Salam,	Zanderighi	’12]
e.g.	at	NNLL	see:



• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time

Numerical implementation: RadISH

kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	

28

e.g.	expansion	up	to	NLL
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kti/kt1 = ⇣i = O(1)

e.g.	expansion	up	to	NLL

Numerical implementation: RadISH
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kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
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numerical	evaluation	with	
Monte-Carlo	methods.	

e.g.	expansion	up	to	NNLL

Numerical implementation: RadISH



• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time
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kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	

e.g.	expansion	up	to	N3LL

Numerical implementation: RadISH
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• Hard-collinear emissions off initial-state legs require some care in the treatment of 
kinematics. Final result reads 

• Formulation equivalent to b-space result, up to a scheme change. Using the delta 
representation for the distribution one finds

Equivalence to CSS formula
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