Resummation for transverse observables at hadron colliders

Pier Francesco Monni CERN

```
    Based on
    1604.02191 with E. Re and P. Torrielli
        and
1705.09127 with W. Bizon, E. Re, L. Rottoli, and P. Torrielli
```

 + ongoing work with
 W. Bizon, X. Chen, Gehrmann-De Ridder, Gehrmann, Glover, A. Huss,
E. Re, L. Rottoli, and P. Torrielli

DIS 2018, Kobe, Japan - 18 April 2018

Outline

- Theory precision at colliders:
- fixed-order vs. all-order perturbation theory
- Factorisation theorems and semi-numerical resummation
- Momentum-space resummation for transverse observables
- Predictions for differential distributions at $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$ at the LHC
- Higgs production
- Drell-Yan production
- Conclusions

Fixed-order vs. All-order

- Fixed-order calculations of radiative corrections are formulated in a well established way (technically challenging, but well posed problem):
- compute amplitudes at a given order
- provide an effective subtraction of IRC divergences
- compute any IRC-safe observable

$$
\Sigma(v)=\int_{0}^{v} \frac{1}{\sigma_{\text {Born }}} \frac{d \sigma}{d v^{\prime}} d v^{\prime} \sim 1+\alpha_{s}+\alpha_{s}^{2}+\ldots
$$

- All-order calculations are still at an earlier stage of evolution
- Each different observable has its own type of sensitivity to IRC physics, it is hard to formulate a general method that works for all at a generic perturbative order
- Higher-order resummations are therefore often formulated in an observable-dependent way, for few well-behaved collider observables

$$
\Sigma(v)=\int_{0}^{v} \frac{1}{\sigma_{\mathrm{Born}}} \frac{d \sigma}{d v^{\prime}} d v^{\prime} \sim e^{\alpha_{s}^{n} L^{n+1}+\alpha_{s}^{n} L^{n}+\alpha_{s}^{n} L^{n-1}+\ldots} \quad v \rightarrow 0
$$

Factorisation of the observable

- Factorisation of the amplitude is not enough as the all-order radiation is tangled by the observable

$$
\Sigma(v)=\int d \Phi_{\mathrm{rad}} \sum_{n=0}^{\infty}\left|\mathcal{M}\left(k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(k_{1}, \ldots, k_{n}\right)\right)
$$

- In order to perform an all-order calculation, one needs to break the observable too into hard, soft and collinear pieces. This can be done for some observables which treat the radiation rather inclusively
- e.g. transverse momentum of a massive singlet

$$
\begin{aligned}
& \delta^{(2)}\left(\overrightarrow{p_{t}}-\left(\vec{k}_{t 1}+\ldots+\vec{k}_{t n}\right)\right)=\int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{i \vec{b} \cdot \vec{k}_{t i}}, \\
& \frac{d^{2} \Sigma\left(p_{t}\right)}{d \Phi_{B} d p_{t}}=\sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \int b d b p_{t} J_{0}\left(p_{t} b\right) \mathbf{f}^{T}\left(b_{0} / b\right) \mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{\mathrm{S}}\left(b_{0} / b\right)\right) H_{\mathrm{CSS}}(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{\mathrm{S}}\left(b_{0} / b\right)\right) \mathbf{f}\left(b_{0} / b\right) \\
& \times \exp \left\{-\sum_{\ell=1}^{2} \int_{b_{0} / b}^{M} \frac{d k_{t}}{k_{t}} \mathbf{R}_{\mathrm{CSS}, \ell}^{\prime}\left(k_{t}\right)\right\} .
\end{aligned}
$$

[Catani, Grazzini '11][Catani et al. '12][Gehrmann, Luebbert, Yang '14][Davies, Stirling '84]
[De Florian, Grazzini '01][Becher, Neubert '10][Li, Zhu '16][Vladimirov '16]

Eluding observable factorisation

- Factorisation is a powerful tool, but limited to observables that have a simple analytic expression in the relevant limits or do not mix soft and collinear radiation (e.g. jet rates)
- Ultimately, we want to use the modern knowledge of IRC dynamics to make more accurate generators. At present a general framework to assess the accuracy of Parton Showers is missing
- It is of primary importance to formulate a link between higher-order resummation and PS
- Can we devise a formulation without a factorisation formula ?
- recursive IRC safety: simple set of criteria for the observable that allows one to formulate the resummation at NLL for global observables without the need for an explicit factorisation.
[Banfi, Salam, Zanderighi '01-'04]
- Most of modern global observables fall into this category.
- The method can be reformulated and extended at higher logarithmic orders

A case study: transverse observables

- Transverse and inclusive observables in colour-singlet production offer a clean experimental and theoretical environment for precision physics:

$$
V(\{\bar{p}\}, k) \equiv V(k)=d_{\ell} g_{\ell}(\phi)\left(\frac{k_{t}}{M}\right)^{a}
$$

$$
V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=V\left(\{\tilde{p}\}, k_{1}+\cdots+k_{n}\right)
$$

- SM measurements (e.g. W, Z, photon,...): parton distributions, strong coupling, W mass,...
- sensitivity to non-perturbative effects (hadronisation, intrinsic kt) only through transverse recoil
- very little/no sensitivity to multi-parton interactions
- BSM measurements/constraints (e.g. Higgs): light/heavy NP, Yukawa couplings,...
- Theoretically interesting:
- clean environment to test/calibrate exclusive generators against high perturbative orders
- Two mechanisms compete in the $p_{t} \rightarrow 0$ limit:
- Sudakov (exponential) suppression when $k_{t i} \sim p_{t} \ll M$
- Azimuthal cancellations (power suppression, dominant) when $p_{t} \ll k_{t i} \ll M$

A case study: transverse observables

Transverse and inclusive observables in colour-singlet production offer a clean experimental and theoretical environment for precision physics:

$$
V(\{\bar{p}\}, k) \equiv V(k)=d_{\ell} g_{\ell}(\phi)\left(\frac{k_{t}}{M}\right)^{a}
$$

$$
V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=V\left(\{\tilde{p}\}, k_{1}+\cdots+k_{n}\right)
$$

- SM measurements (e.g. W, Z, photon,...): parton distributions, strong coupling, W mass,...
- sensitivity to non-perturbative effects (hadronisation, intrinsic kt) only through

Can we build a more exclusive solution in momentum space ?

See also work in [Ebert, Tackmann '16][Kang, Lee, Vaidya '17]

- Theoretically interesting:
- clean environment to test/calibrate exclusive generators against high perturbative orders
- Two mechanisms compete in the $p_{t} \rightarrow 0$ limit:
- Sudakov (exponential) suppression when $k_{t i} \sim p_{t} \ll M$
- Azimuthal cancellations (power suppression, dominant) when $p_{t} \ll k_{t i} \ll M$

Direct space: virtual corrections

Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Direct space: virtual corrections

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

All-order form factor
e.g. [Dixon, Magnea, Sterman '08]

Direct space: real radiation

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

```
e.g.
|M(\mp@subsup{k}{a}{})\mp@subsup{|}{}{2}=\frac{|M(\mp@subsup{\tilde{p}}{1}{},\mp@subsup{\tilde{p}}{2}{},\mp@subsup{k}{a}{})\mp@subsup{|}{}{2}}{|\mp@subsup{M}{B}{(}(\mp@subsup{\tilde{p}}{1}{},\tilde{\mp@subsup{p}{2}{}})\mp@subsup{|}{}{2}}=|M(\mp@subsup{k}{a}{})\mp@subsup{|}{}{2}
```

 soft radiation (one log down in hard-collinear case)

$+\ldots$
$\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}=\frac{\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{a}, k_{b}\right)\right|^{2}}{\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}}-\frac{1}{2!}\left|M\left(k_{a}\right)\right|^{2}\left|M\left(k_{b}\right)\right|^{2} \longrightarrow$

+...

Direct space: real radiation

Direct space: real radiation

Direct space: real radiation

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

$\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}=\frac{\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{a}, k_{b}\right)\right|^{2}}{\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}}-\frac{1}{2!} \underbrace{\left|M\left(k_{a}\right)\right|^{2}\left|M\left(k_{b}\right)\right|^{2}}_{\alpha_{s}^{2} L^{4}} \rightarrow$
 $+.$.

All-order subtraction of IRC singularities

Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \longrightarrow\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \\
& \quad \times \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
& \left.\left.\quad+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right)\right\}
\end{aligned}
$$

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$
\begin{aligned}
& \prod_{i=1}^{n} \int\left[d k_{i}\right] \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
&\left.\left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right) \Theta\left(\epsilon k_{t 1}-k_{t i}\right)\right\}
\end{aligned}
$$

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$
\begin{gathered}
\prod_{i=1}^{n} \int\left[d k_{i}\right] \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
\left.\left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right) \Theta\left(\epsilon k_{t 1}-k_{t i}\right)\right\} \\
\propto \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\epsilon k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right)
\end{gathered}
$$

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$
\begin{gathered}
R\left(\epsilon k_{t 1}\right) \equiv \sum_{\ell=1}^{2} \int_{\epsilon k_{t 1}}^{M} \frac{d k_{t}}{k_{t}} R_{\ell}^{\prime}\left(k_{t}\right)=\sum_{\ell=1}^{2} \int_{\epsilon k_{t 1}}^{M} \frac{d k_{t}}{k_{t}}(\underbrace{\left.A_{\ell}\left(\alpha_{s}\left(k_{t}\right)\right) \ln \frac{M^{2}}{k_{t}^{2}}+B_{\ell}\left(\alpha_{s}\left(k_{t}\right)\right)\right)}_{\substack{\text { Anomalous dimensions } \\
\text { start differing from b- } \\
\text { space ones at NBLL }}} \\
\prod_{i=1}^{n} \int\left[d k_{i}\right] \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
\left.\left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right) \Theta\left(\epsilon k_{t 1}-k_{t i}\right)\right\} \\
\propto \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\epsilon k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right)
\end{gathered}
$$

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$
\begin{aligned}
& \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)=\left[\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \text { DGLAP anomalous dims } \\
& \\
& \\
& \text { adiator: }
\end{aligned} e^{-\mathbf{R}\left(\epsilon k_{t 1}\right)} \exp \left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\right\}, ~ l
$$

All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$ and $\mathcal{V}\left(\Phi_{B}\right)$:
- introduce a phase-space resolution scale (slicing parameter) $Q_{0}=\epsilon k_{t 1}$
- real correlated blocks with total transverse momentum $k_{t i}<\epsilon k_{t 1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function
- compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$
\begin{aligned}
\hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)= & {\left[\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \text { DGLAP anomalous dims } } \\
& \times e^{-\mathbf{R}\left(\epsilon k_{t 1}\right)} \exp \left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\right\} \\
& \sum_{\ell_{1}=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t 1}\right)+\frac{\alpha_{s}\left(k_{t 1}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}\left(\alpha_{s}\left(k_{t 1}\right)\right)+\boldsymbol{\Gamma}_{N_{\ell_{1}}}^{(C)}\left(\alpha_{s}\left(k_{t 1}\right)\right)\right) \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \sum_{\ell_{i}=1}^{2}\left(\mathbf{R}_{\ell_{i}}^{\prime}\left(k_{t i}\right)+\frac{\alpha_{s}\left(k_{t i}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{i}}}\left(\alpha_{s}\left(k_{t i}\right)\right)+\boldsymbol{\Gamma}_{N_{\ell_{i}}}^{(C)}\left(\alpha_{s}\left(k_{t i}\right)\right)\right) \\
& \times \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right),
\end{aligned}
$$

- compute resolved (reals only) in 4 dim. with $\epsilon \rightarrow 0$ (MC events !)

Physical picture: MC generator

- This is, essentially, a quasi-exclusive generator with higher logarithmic accuracy
\Rightarrow e.g. gluon emissions off quark legs

$$
\begin{aligned}
\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}\right. & \left.+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right) \\
& +\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots
\end{aligned}
$$

Small transverse momentum limit

- CSS result recovered by simply transforming observable into b-space and integrating over radiation (see backup material)
- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum
e.g. NLL with $\mathcal{L}\left(\mathrm{k}_{\mathrm{t} 1}\right)=1$ for simplicity

$$
\frac{d^{3} \Sigma\left(p_{t}\right)}{d^{2} p_{t} d \Phi_{B}}=\sigma^{(0)}\left(\Phi_{B}\right) \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) \int d \mathcal{Z}\left[\left\{R^{\prime}\left(k_{t 1}\right), k_{i}\right\}\right] \delta^{(2)}\left(\overrightarrow{p_{t}}-\sum_{i=1}^{n+1} \vec{k}_{t i}\right)
$$

- Transition from exponential to a power-like suppression at small transverse momentum

$$
\frac{d^{2} \Sigma\left(p_{t}\right)}{d p_{t} d \Phi_{B}} \simeq 4 p_{t} \sigma^{(0)}\left(\Phi_{B}\right) \int_{\Lambda_{\mathrm{QCD}}}^{M} \frac{d k_{t 1}}{k_{t 1}^{3}} e^{-R\left(k_{t 1}\right)} \simeq 2 p_{t} \sigma^{(0)}\left(\Phi_{B}\right)\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}}
$$

Small transverse momentum limit

- CSS result recovered by simply transforming observable into b-space and integrating over radiation (see backup material)
- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum
e.g. NLL with $\mathcal{L}\left(\mathrm{k}_{\mathrm{t} 1}\right)=1$ for simplicity

$$
\frac{d^{3} \Sigma\left(p_{t}\right)}{d^{2} p_{t} d \Phi_{B}}=\sigma^{(0)}\left(\Phi_{B}\right) \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) \int d \mathcal{Z}\left[\left\{R^{\prime}\left(k_{t 1}\right), k_{i}\right\}\right] \delta^{(2)}\left(\vec{p}_{t}-\sum_{i=1}^{n+1} \vec{k}_{t i}\right)
$$

- Transition from exponential to a power-like suppression at small transverse momentum

$$
\frac{d^{2} \Sigma\left(p_{t}\right)}{d p_{t} d \Phi_{B}} \simeq 4 p_{t} \sigma^{(0)}\left(\Phi_{B}\right) \int_{\Lambda_{\mathrm{QCD}}}^{M} \frac{d k_{t 1}}{k_{t 1}^{3}} e^{-R\left(k_{t 1}\right)} \simeq 2 p_{t} \sigma^{(0)}\left(\Phi_{B}\right)\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}}
$$

Small transverse momentum limit

- CSS result recovered by simply transforming observable into b-space and integrating over radiation (see backup material)
- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum
e.g. NLL with $\mathcal{L}\left(\mathrm{k}_{\mathrm{t} 1}\right)=1$ for simplicity

$$
\frac{d^{3} \Sigma\left(p_{t}\right)}{d^{2} p_{t} d \Phi_{B}}=\sigma^{(0)}\left(\Phi_{B}\right) \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) \int d \mathcal{Z}\left[\left\{R^{\prime}\left(k_{t 1}\right), k_{i}\right\}\right] \delta^{(2)}\left(\overrightarrow{p_{t}}-\sum_{i=1}^{n+1} \vec{k}_{t i}\right)
$$

as $\mathrm{p}_{\mathrm{t}} \rightarrow 0$ Sudakov is "frozen" at $\mathrm{k}_{\mathrm{t} 1} \gg \mathrm{p}_{\mathrm{t}}$ (no exponential suppression)

Random azimuthal orientation of momenta leads to scaling $\propto 1 / k_{\mathrm{t} 1}^{2}$

- Transition from exponential to a power-like suppression at small transverse momentum

$$
\frac{d^{2} \Sigma\left(p_{t}\right)}{d p_{t} d \Phi_{B}} \simeq 4 p_{t} \sigma^{(0)}\left(\Phi_{B}\right) \int_{\Lambda_{\mathrm{QCD}}}^{M} \frac{d k_{t 1}}{k_{t 1}^{3}} e^{-R\left(k_{t 1}\right)} \simeq 2 p_{t} \sigma^{(0)}\left(\Phi_{B}\right)\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}}
$$

Small transverse momentum limit

\Rightarrow e.g. Z production at 14 TeV

Matching to Fixed Order

- Implementation in a MC code (RadISH) up to N3LL
- fully differential in Born kinematics
- matching to fixed order cumulative distribution, e.g. Higgs:

$$
\begin{gathered}
\text { [Anastasiou et al. '15-'16] } \begin{array}{l}
\text { [Boughezal et al. '15] } \\
\text { [Caola et al. '15] } \\
\text { [Chen et al. '16] }
\end{array} \\
\sigma_{p p \rightarrow H}^{\mathrm{N}^{3} \mathrm{LO}}-\Sigma_{1-\mathrm{jet}}^{\mathrm{NNLO}}\left(p_{t}^{H}\right)
\end{gathered}
$$

- Additive vs. multiplicative schemes

OLD CHOICE :

$$
\begin{gathered}
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\left(\Sigma_{\mathrm{RES}}\left(p_{t}\right)\right)^{Z} \frac{\Sigma_{\mathrm{FO}}\left(p_{t}\right)}{\left(\Sigma_{\mathrm{EXP}}\left(p_{t}\right)\right)^{Z}} \\
Z=\left(1-\left(\frac{p_{t}}{Q_{\mathrm{match}}}\right)\right)^{h} \Theta\left(Q_{\mathrm{match}}-p_{t}\right)
\end{gathered}
$$

R - SCHEME :

$$
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\Sigma_{\mathrm{RES}}\left(p_{t}\right)+\Sigma_{\mathrm{FO}}\left(p_{t}\right)-\Sigma_{\mathrm{EXP}}\left(p_{t}\right)
$$

Matching to Fixed Order

- Implementation in a MC code (RadISH) up to N3LL
- fully differential in Born kinematics
- matching to fixed order cumulative distribution, e.g. Higgs:

$$
\begin{array}{cc}
\text { [Anastasiou et al. '15-'16] } & \begin{array}{c}
\text { [Boughezal et al. '15] } \\
\text { [Caola et al. ''15] } \\
\text { [Chen et al. '16] }
\end{array} \\
\sigma_{p p \rightarrow H}^{\mathrm{N}^{3} \mathrm{LO}}-\Sigma_{1-\mathrm{jet}}^{\mathrm{NNLO}}\left(p_{t}^{H}\right)
\end{array}
$$

- Additive vs. multiplicative schemes

$$
\begin{aligned}
& \text { OLD CHOICE : } \\
& \qquad \begin{array}{l}
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\left(\Sigma_{\mathrm{RES}}\left(p_{t}\right)\right)^{Z} \frac{\Sigma_{\mathrm{FO}}\left(p_{t}\right)}{\left(\Sigma_{\mathrm{EXP}}\left(p_{t}\right)\right)^{Z}} \\
\quad Z=\left(1-\left(\frac{p_{t}}{Q_{\mathrm{match}}}\right)\right)^{h} \Theta\left(Q_{\mathrm{match}}-p_{t}\right)
\end{array}
\end{aligned}
$$

NEW CHOICE :

$$
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\frac{\Sigma_{\mathrm{RES}}\left(p_{t}\right)}{\mathcal{L}\left(\mu_{F}\right)}\left[\mathcal{L}\left(\mu_{F}\right) \frac{\Sigma_{\mathrm{FO}}\left(p_{t}\right)}{\Sigma_{\mathrm{EXP}}\left(p_{t}\right)}\right]_{\mathrm{EXPANDED}}
$$

Matching to Fixed Order

- Implementation in a MC code (RadISH) up to N3LL
- fully differential in Born kinematics
- matching to fixed order cumulative distribution, e.g. Higgs:

$$
\begin{array}{cc}
\text { [Anastasiou et al. '15-'16] } & \begin{array}{c}
\text { [Boughezal et al. '15] } \\
\text { [Cala et al. ''15] } \\
\text { [Chen et al. '16] }
\end{array} \\
\sigma_{p p \rightarrow H}^{\mathrm{N}^{3} \mathrm{LO}}-\Sigma_{1-\mathrm{jet}}^{\mathrm{NNLO}}\left(p_{t}^{H}\right)
\end{array}
$$

- Additive vs. multiplicative schemes

OLD CHOICE :

$$
\begin{gathered}
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\left(\Sigma_{\mathrm{RES}}\left(p_{t}\right)\right)^{Z} \frac{\Sigma_{\mathrm{FO}}\left(p_{t}\right)}{\left(\Sigma_{\mathrm{EXP}}\left(p_{t}\right)\right)^{Z}} \\
Z=\left(1-\left(\frac{p_{t}}{Q_{\mathrm{match}}}\right)\right)^{h} \Theta\left(Q_{\mathrm{match}}-p_{t}\right)
\end{gathered}
$$

NEW CHOICE :

$$
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\frac{\Sigma_{\mathrm{RES}}\left(p_{t}\right)}{\mathcal{L}\left(\mu_{F}\right)}\left[\mathcal{L}\left(\mu_{F}\right) \frac{\Sigma_{\mathrm{FO}}\left(p_{t}\right)}{\Sigma_{\mathrm{EXP}}\left(p_{t}\right)}\right]_{\mathrm{EXPANDED}}
$$

$$
\Sigma_{\mathrm{MAT}}\left(p_{t}\right)=\Sigma_{\mathrm{RES}}\left(p_{t}\right)+\Sigma_{\mathrm{FO}}\left(p_{t}\right)-\Sigma_{\mathrm{EXP}}\left(p_{t}\right)
$$

Higher-order (in a logarithmic sense) constants from FO in the multiplicative scheme. No extra parameters needed

An example: Higgs p T spectrum

- Implementation in a MC code (RadISH) up to N3LL
- fully differential in Born kinematics


```
#3LL corrections moderate, reduction of
uncertainty at small pt
\(\Rightarrow\) Good agreement between different matching schemes, choose multiplicative solution at higher order
```


An example: Higgs pT spectrum

=Important cancellations at mH/2 (!), uncertainties likely underestimated at this scale (long known problem)
$\Rightarrow N^{3} L L$ corrections amount to a few-\% at small pt, reduction of band below 10 GeV consistently with NLO matching

An example: Higgs p'T spectrum

-Simulation of fiducial distributions (e.g. H -> gamma gamma)

An example: DY distributions (pT)

\Rightarrow Matching to differential NNLO from NNLOJET, assume N3LO correction to total XS is zero (i.e. no as³ constant term included)
[Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss, T.A. Morgan '16]
"(sub-)percent precision in data, theory can reach ~3-5\% accuracy...
Other effects important (QED, PDFs, quark masses, hadronisation)
\Rightarrow Relevant for W-mass studies

An example: DY distributions (phi*)

Conclusions

- Higher-order resummation can be formulated directly in momentum space without the need for a factorisation for the considered observable
- The approach I briefly outlined is generalised to any rIRC safe observable in twoscale problems
- Systematic extension to any logarithmic order
- Efficient implementation in a computer code: e.g. ARES, RadISH
- Analytic resummation formulated in a language closer to parton showers

Differential distributions at $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$

- Higgs: uncertainties in the 5\%-10\% range - consistent inclusion of quark-mass effects necessary at this order of accuracy (ongoing study)
- DY: uncertainties reduced to $\sim 5 \%$ across the whole spectrum - good agreement with data in the large-invariant mass bins (study low invariant mass in progress)
- Improving on this requires the assessment of several effects: NP corrections, quark-mass corrections, QED, theory uncertainties in PDFs, ...

Thank you for listening

Squared amplitude decomposition

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Recast all-order squared ME for n real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

```
e.g. soft radiation (analogous considerations for hard-collinear)
```

$\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}\left\{\left(\frac{1}{n!} \prod_{i=1}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)+\right.$
$\left[\sum_{a>b} \frac{1}{(n-2)!}\left(\prod_{\substack{i=1 \\ i \neq a, b}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}+\right.$
$\left.\sum_{\substack{a>b}} \sum_{\substack{c>d \\ c, d \neq a, b}} \frac{1}{(n-4)!2!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c, d}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\left|\tilde{M}\left(k_{c}, k_{d}\right)\right|^{2}+\ldots\right]$
$\left.+\left[\sum_{a>b>c} \frac{1}{(n-3)!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2}+\ldots\right]+\ldots\right\},{ }_{25}$

Squared amplitude decomposition

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Recast all-order squared ME for n real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

```
e.g. soft radiation (analogous considerations for hard-collinear)
```

$\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}\left\{\left(\frac{1}{n!} \prod_{i=1}^{n}\left|M\left(k_{i}\right)\right|^{2} \mathrm{LL}\right)\right\}+$
$\left[\sum_{a>b} \frac{1}{(n-2)!}\left(\prod_{\substack{i=1 \\ i \neq a, b}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}+\right.$
$\left.\sum_{\substack{a>b}} \sum_{\substack{c>d \\ c, d \neq a, b}} \frac{1}{(n-4)!2!}\left(\prod_{\substack{i=1 \\ i \neq a b, b, c, d}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\left|\tilde{M}\left(k_{c}, k_{d}\right)\right|^{2}+\ldots\right]$
$\left.+\left[\sum_{a>b>c} \frac{1}{(n-3)!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2}+\ldots\right]+\ldots\right\}$,

Squared amplitude decomposition

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Recast all-order squared ME for n real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

```
e.g. soft radiation (analogous considerations for hard-collinear)
```

$$
\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}\left\{\left(\frac{1}{n!} \prod_{i=1}^{n}\left|M\left(k_{i}\right)\right|^{2} \mathrm{LL}\right)\right\}+
$$

$$
\left[\sum_{a>b}\left(\begin{array}{c}
1 \\
(n-2)! \\
\left.\prod_{\substack{i=1 \\
i \neq a, b}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \\
\text { NLL }
\end{array}\right\}\right.
$$

$$
\sum_{a>b} \sum_{\substack{c>d \\ c, d \neq a, b}}\left(\frac{1}{(n-4)!2!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c, d}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\left|\tilde{M}\left(k_{c}, k_{d}\right)\right|^{2}+\ldots\right]
$$

$$
\left.+\left[\sum_{a>b>c} \frac{1}{(n-3)!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2}+\ldots\right]+\ldots\right\}
$$

Squared amplitude decomposition

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Recast all-order squared ME for n real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

```
e.g. soft radiation (analogous considerations for hard-collinear)
```

$$
\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}\left\{\left(\frac{1}{n!} \prod_{i=1}^{n}\left|M\left(k_{i}\right)\right|^{2} \mathrm{LL}\right)\right\}+
$$

$$
\left[\sum_{a>b} \frac{1}{(n-2)!}\left(\prod_{\substack{i=1 \\ i \neq a, b}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}+\right.
$$

$$
\left.\sum_{a>b} \sum_{\substack{c>d \\ c, d \neq a, b}}\left(\frac{1}{(n-4)!2!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c, d}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\left|\tilde{M}\left(k_{c}, k_{d}\right)\right|^{2}+\ldots\right\}\right]
$$

$$
\left.+\left[\sum_{a>b>} \frac{1}{(n-3)!}\left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2}+\ldots\right\}+\ldots\right\},
$$

Squared amplitude decomposition

- Write all-order cross section as $\left(V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=\left|\vec{k}_{t 1}+\cdots+\vec{k}_{t n}\right|\right)$

$$
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Recast all-order squared ME for n real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy
e.g. soft radiation (analogous considerations for hard-collinear)

$$
\begin{aligned}
& \left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}\left\{\left(\frac{1}{n!} \prod_{i=1}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\right\}+ \\
& {\left[\sum_{a>b}\left(\frac{1}{(n-2)!}\left(\prod_{\substack{i=1 \\
i \neq a, b}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\right]\right.} \\
& \sum_{a>b} \sum_{\substack{c>d \\
c, d \neq a, b}}\left(\frac{1}{(n-4)!2!}\left(\prod_{\substack{i=1 \\
i \neq a, b, c, d}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\left|\tilde{M}\left(k_{c}, k_{d}\right)\right|^{2}+\ldots\right. \\
& \left.+\left[\sum_{a>b>} \frac{1}{(n-3)!}\left(\prod_{\substack{i=1 \\
i \neq a, b, c}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2}+\ldots\right]+\ldots\right\},
\end{aligned}
$$

In addition to this counting, requiring that the observable is recursively IRC safe allows one to construct a (simpler) all-order subtraction scheme

Monte Carlo formulation

- One great simplification: choice of the resolution variable such that correlated blocks entering at $\mathrm{N}^{\mathrm{k}} \mathrm{LL}$ in the unresolved radiation only contribute at $\mathrm{N}^{\mathrm{k}+1} \mathrm{LL}$ in the resolved case
- i.e. we can expand out the cutoff dependence and retain in the Radiator only the terms necessary to cancel the singularities in the resolved radiation

$$
\begin{aligned}
R\left(\epsilon k_{t 1}\right) & =R\left(k_{t 1}\right)+R^{\prime}\left(k_{t 1}\right) \ln \frac{1}{\epsilon}+\frac{1}{2} R^{\prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\epsilon}+\ldots \\
R^{\prime}\left(k_{t i}\right) & =R^{\prime}\left(k_{t 1}\right)+R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{k_{t 1}}{k_{t i}}+\ldots
\end{aligned}
$$

Expansion is safe since
in the resolved
radiation
$k_{t 1} / k_{t i} \sim 1$
e.g. at NLL

$$
\begin{gathered}
\simeq \int \frac{d k_{t 1}}{k_{t 1}} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}\left(k_{t 1}\right), k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
\int d \mathcal{Z}\left[\left\{R^{\prime}\left(k_{t 1}\right), k_{i}\right\}\right]=\epsilon^{R^{\prime}\left(k_{t 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)
\end{gathered}
$$

Monte Carlo formulation

- One great simplification: choice of the resolution variable such that correlated blocks entering at $\mathrm{N}^{\mathrm{k}} \mathrm{LL}$ in the unresolved radiation only contribute at $\mathrm{N}^{\mathrm{k}+1} \mathrm{LL}$ in the resolved case
- i.e. we can expand out the cutoff dependence and retain in the Radiator only the terms necessary to cancel the singularities in the resolved radiation

$$
\begin{aligned}
R\left(\epsilon k_{t 1}\right) & =R\left(k_{t 1}\right)+R^{\prime}\left(k_{t 1}\right) \ln \frac{1}{\epsilon}+\frac{1}{2} R^{\prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\epsilon}+\ldots \\
R^{\prime}\left(k_{t i}\right) & =R^{\prime}\left(k_{t 1}\right)+R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{k_{t 1}}{k_{t i}}+\ldots
\end{aligned}
$$

Expansion is safe since
in the resolved
radiation
$k_{t 1} / k_{t i} \sim 1$

- Corrections beyond NLL are obtained as follows
- Add subleading effects in the Sudakov radiator and constants
- Correct a fixed number of the NLL resolved emissions:
- only one at NNLL
- two at N3LL

Numerical implementation: RadISH

- Since the transverse momenta of the resolved reals are of the same order, we can expand the whole integrand about $k_{t i} \sim k_{t 1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL resolved reals by simply including one correction at a time

```
e.g. expansion up to NLL
```


$$
\begin{aligned}
& \mathcal{L}_{\mathbb{N}^{3} \mathrm{LL}}\left(k_{t 11}\right)=\sum_{c, c^{\prime}} \frac{d\left|M_{B}\right|_{c c^{\prime}}^{2}}{d \Phi_{B}} \sum_{i, j} \int_{x_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{d z_{2}}{z_{2}} f_{i}\left(k_{t 1}, \frac{x_{1}}{z_{1}}\right) f_{j}\left(k_{t 1}, \frac{x_{2}}{z_{2}}\right) \\
& \left\{\delta_{c i} \delta_{c^{\prime} j} \delta\left(1-z_{1}\right) \delta\left(1-z_{2}\right)\left(1+\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} H^{(1)}\left(\mu_{R}\right)+\frac{\alpha_{s}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} H^{(2)}\left(\mu_{R}\right)\right)\right. \\
& +\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} \frac{1}{1-2 \alpha_{s}\left(\mu_{R}\right) \beta_{0} L}\left(1-\alpha_{s}\left(\mu_{R}\right) \frac{\beta_{1}}{\beta_{0}} \frac{\ln \left(1-2 \alpha_{s}\left(\mu_{R}\right) \beta_{0} L\right)}{1-2 \alpha_{s}\left(\mu_{R}\right) \beta_{0} L}\right) \\
& \times\left(C_{c i}^{(1)}\left(z_{1}\right) \delta\left(1-z_{2}\right) \delta_{c^{\prime} j}+\left\{z_{1} \leftrightarrow z_{2} ; c, i \leftrightarrow c^{\prime}, j\right\}\right) \\
& +\frac{\alpha_{s}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} \frac{1}{\left(1-2 \alpha_{s}\left(\mu_{R}\right) \beta_{0} L\right)^{2}}\left(\left(C_{c i}^{(2)}\left(z_{1}\right)-2 \pi \beta_{0} C_{c i}^{(1)}\left(z_{1}\right) \ln \frac{M^{2}}{\mu_{R}^{2}}\right) \delta\left(1-z_{2}\right) \delta_{c^{\prime} j}\right. \\
& \left.+\left\{z_{1} \leftrightarrow z_{2} ; c, i \leftrightarrow c^{\prime}, j\right\}\right)+\frac{\alpha_{s}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} \frac{1}{\left(1-2 \alpha_{s}\left(\mu_{R}\right) \beta_{0} L\right)^{2}}\left(C_{c i}^{(1)}\left(z_{1}\right) C_{c^{\prime} j}^{(1)}\left(z_{2}\right)+G_{c i}^{(1)}\left(z_{1}\right) G_{c^{\prime} j}^{(1)}\left(z_{2}\right)\right) \\
& \left.+\frac{\alpha_{s}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} H^{(1)}\left(\mu_{R}\right) \frac{1}{1-2 \alpha_{s}\left(\mu_{R}\right) \beta_{0} L}\left(C_{c i}^{(1)}\left(z_{1}\right) \delta\left(1-z_{2}\right) \delta_{c^{\prime} j}+\left\{z_{1} \leftrightarrow z_{2} ; c, i \leftrightarrow c^{\prime}, j\right\}\right)\right\}
\end{aligned}
$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities

Numerical implementation: RadISH

- Since the transverse momenta of the resolved reals are of the same order, we can expand the whole integrand about $k_{t i} \sim k_{t 1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL resolved reals by simply including one correction at a time

$$
\begin{aligned}
& \text { e.g. expansion up to NLL } \\
& \frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{N^{3} L L}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
& k_{t i} / k_{t 1}=\zeta_{i}=\mathcal{O}(1) \\
& \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] G\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)=\epsilon^{R^{\prime}\left(k_{t 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t 1}\right) G\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)
\end{aligned}
$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities

The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

Numerical implementation: RadISH

- Since the transverse momenta of the resolved reals are of the same order, we can expand the whole integrand about $k_{t i} \sim k_{t 1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL resolved reals by simply including one correction at a time

$$
\begin{aligned}
& \text { e.g. expansion up to NNLL } \\
& \frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{N^{3} \mathrm{LL}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
& +\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
& \times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right) \\
& \left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}
\end{aligned}
$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities

```
- The ensemble of NLL real
emissions dZ is generated
as a parton shower. Fast
numerical evaluation with
Monte-Carlo methods.
```


Numerical implementation: RadISH

- Since the transverse momenta of the resolved reals are of the same order, we can expand the whole integrand about $k_{t i} \sim k_{t 1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL resolved reals by simply including one correction at a time

$$
\left.\begin{array}{l}
\text { e.g. expansion up to N3LL } \\
\frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{N^{3} \mathrm{LL}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
+\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
\times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right) \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right.}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\} \\
+\frac{1}{2} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s 1}}{\zeta_{s 1}} \frac{d \phi_{s 1}}{2 \pi} \int_{0}^{1} \frac{d \zeta_{s 2}}{\zeta_{s 2}} \frac{d \phi_{s 2}}{2 \pi} R^{\prime}\left(k_{t 1}\right) \\
\times\left\{\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\left(R^{\prime \prime}\left(k_{t 11}\right)\right)^{2} \ln \frac{1}{\zeta_{s 1}} \ln \frac{1}{\zeta_{s 2}}-\partial_{L} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) R^{\prime \prime}\left(k_{t 1}\right)\left(\ln \frac{1}{\zeta_{s 1}}+\ln \frac{1}{\zeta_{s 2}}\right)\right. \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right.}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\} \\
\times\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}, k_{s 2}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}\right)\right)-\right. \\
\left.\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 2}\right)\right)+\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+\mathcal{O}\left(\alpha_{s}^{n} \ln 2 n-6\right.
\end{array} \frac{1}{v}\right) 31 .
$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities
- The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

Equivalence to CSS formula

- Hard-collinear emissions off initial-state legs require some care in the treatment of kinematics. Final result reads

$$
\begin{aligned}
& \frac{d \Sigma(v)}{d p_{t} d \Phi_{B}}=\int_{\mathcal{C}_{1}} \frac{d N_{1}}{2 \pi i} \int_{\mathcal{C}_{2}} \frac{d N_{2}}{2 \pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right| c_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \mathbf{f}_{N_{1}}^{T}\left(\mu_{0}\right) \frac{d \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)}{d p_{t}} \mathbf{f}_{N_{2}}\left(\mu_{0}\right) \\
& \hat{\mathbf{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)=\left[\mathbf{C}_{N_{1}}^{c_{1} T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \\
& \times e^{-\mathbf{R}\left(k_{\left.k_{11}\right)}\right) \exp \left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon_{k_{t 1}}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\right\}} \\
& \sum_{\ell_{1}=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t 1}\right)+\frac{\alpha_{s}\left(k_{t 1}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}\left(\alpha_{s}\left(k_{t 1}\right)\right)+\mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}\left(\alpha_{s}\left(k_{t 1}\right)\right)\right) \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \sum_{\ell_{1}=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t i}\right)+\frac{\alpha_{s}\left(k_{t i}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}\left(\alpha_{s}\left(k_{t i}\right)\right)+\mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}\left(\alpha_{s}\left(k_{t i}\right)\right)\right) \\
& \times \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right),
\end{aligned}
$$

- Formulation equivalent to b-space result, up to a scheme change. Using the delta representation for the distribution one finds

$$
\delta^{(2)}\left(\overrightarrow{p_{t}}-\left(\vec{k}_{t 1}+\ldots+\vec{k}_{t n}\right)\right)=\int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \overrightarrow{p_{t}}} \prod_{i=1}^{n} e^{i \vec{b} \cdot \vec{k}_{t i}}
$$

$$
\begin{aligned}
& \frac{d \Sigma(v)}{d p_{t} d \Phi_{B}}=\int_{\mathcal{C}_{1}} \frac{d N_{1}}{2 \pi i} \int_{\mathcal{C}_{2}} \frac{d N_{2}}{2 \pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \mathbf{f}_{N_{1}}^{T}\left(\mu_{0}\right) \frac{d \hat{\boldsymbol{\Sigma}}_{N_{1}}^{c_{1}, c_{2}}\left(N_{2}\right.}{d p_{t}}(v) \mathbf{f}_{N_{2}}\left(\mu_{0}\right)=
\end{aligned}
$$

