Resummation for transverse observables at hadron colliders

Pier Francesco Monni
CERN

Based on
1604.02191 with E. Re and P. Torrielli
and
1705.09127 with W. Bizon, E. Re, L. Rottoli, and P. Torrielli

+ ongoing work with
W. Bizon, X. Chen, Gehrmann-De Ridder, Gehrmann, Glover, A. Huss,
E. Re, L. Rottoli, and P. Torrielli

DIS 2018, Kobe, Japan - 18 April 2018
Outline

- Theory precision at colliders:
 - fixed-order vs. all-order perturbation theory
- Factorisation theorems and semi-numerical resummation
- Momentum-space resummation for transverse observables
- Predictions for differential distributions at $N^3LL+NNLO$ at the LHC
 - Higgs production
 - Drell-Yan production
- Conclusions
Fixed-order vs. All-order

- Fixed-order calculations of radiative corrections are formulated in a well established way (technically challenging, but well posed problem):
 - compute amplitudes at a given order
 - provide an effective subtraction of IRC divergences
 - compute any IRC-safe observable

$$\Sigma(v) = \int_0^v \frac{1}{\sigma_{\text{Born}}} \frac{d\sigma}{dv'} dv' \sim 1 + \alpha_s + \alpha_s^2 + \ldots$$

- All-order calculations are still at an earlier stage of evolution
 - Each different observable has its own type of sensitivity to IRC physics, it is hard to formulate a general method that works for all at a generic perturbative order
 - Higher-order resummations are therefore often formulated in an observable-dependent way, for few well-behaved collider observables

$$\Sigma(v) = \int_0^v \frac{1}{\sigma_{\text{Born}}} \frac{d\sigma}{dv'} dv' \sim e^{\alpha_s L^{n+1}} + \alpha_s L^n + \alpha_s L^{n-1} + \ldots$$

$$v \to 0$$
Factorisation of the observable

- Factorisation of the amplitude is not enough as the all-order radiation is tangled by the observable

\[\Sigma(v) = \int d\Phi_{\text{rad}} \sum_{n=0}^{\infty} |\mathcal{M}(k_1, \ldots, k_n)|^2 \Theta(v - V(k_1, \ldots, k_n)) \]

- In order to perform an all-order calculation, one needs to **break** the observable too into hard, soft and collinear pieces. This can be done for some observables which treat the radiation rather inclusively

 - e.g. transverse momentum of a massive singlet

\[\delta^{(2)}(p_t - (\vec{k}_{t1} + \ldots + \vec{k}_{tn})) = \int \frac{d^2b}{4\pi^2} e^{-ib\cdot \vec{p}_t} \prod_{i=1}^{n} e^{ib\cdot \vec{k}_{ti}}, \]

\[
\frac{d^2\Sigma(p_t)}{d\Phi_B dp_t} = \sum_{c_1, c_2} \frac{d|M_B|^2_{c_1 c_2}}{d\Phi_B} \int b \, db \, p_t J_0(p_t b) f^T(b_0/b) C_{N_1}^{c_1 T} (\alpha_S(b_0/b)) H_{\text{CSS}}(M) C_{N_2}^{c_2} (\alpha_S(b_0/b)) f(b_0/b) \\
\times \exp \left\{- \sum_{\ell=1}^{2} \int_{b_0/b}^{M} \frac{dk_t}{k_t} R'_{\text{CSS},\ell}(k_t) \right\}.
\]
Eluding observable factorisation

- Factorisation is a powerful tool, but limited to observables that have a simple analytic expression in the relevant limits or do not mix soft and collinear radiation (e.g. jet rates)

- Ultimately, we want to use the modern knowledge of IRC dynamics to make more accurate generators. At present a general framework to assess the accuracy of Parton Showers is missing
 - It is of primary importance to formulate a link between higher-order resummation and PS

- Can we devise a formulation without a factorisation formula?
 - *recursive IRC safety*: simple set of criteria for the observable that allows one to formulate the resummation at NLL for global observables without the need for an explicit factorisation.
 - Most of modern global observables fall into this category.
 - The method can be reformulated and extended at higher logarithmic orders

[Banfi, Salam, Zanderighi '01-'04]
[Banfi, McAslan, PM, Zanderighi ’14–’16]
[PM, Re, Torrielli ’16]
[Bizon, PM, Re, Rottoli, Torrielli ’17]
A case study: transverse observables

- **Transverse and inclusive** observables in colour-singlet production offer a clean experimental and theoretical environment for precision physics:

 \[V(\{\tilde{p}\}, k) \equiv V(k) = d_\ell \, g_\ell (\phi) \left(\frac{k_t}{M} \right)^a \]

 \[V(\{\tilde{p}\}, k_1, \ldots, k_n) = V(\{\tilde{p}\}, k_1 + \cdots + k_n) \]

- **SM measurements** (e.g. W, Z, photon, ...): parton distributions, strong coupling, W mass, ...
 - sensitivity to non-perturbative effects (hadronisation, intrinsic kt) only through transverse recoil
 - very little/no sensitivity to multi-parton interactions

- **BSM measurements/constraints** (e.g. Higgs): light/heavy NP, Yukawa couplings, ...

- **Theoretically interesting**:
 - clean environment to test/calibrate exclusive generators against high perturbative orders
 - **Two mechanisms compete** in the \(p_t \to 0 \) limit:
 - Sudakov (exponential) suppression when \(k_{t_i} \sim p_t \ll M \)
 - Azimuthal cancellations (power suppression, dominant) when \(p_t \ll k_{t_i} \ll M \)
A case study: transverse observables

- Transverse and inclusive observables in colour-singlet production offer a clean experimental and theoretical environment for precision physics:

\[V(\{\vec{p}\}, k) \equiv V(k) = d_\ell g_\ell(\phi) \left(\frac{k_t}{M} \right)^a \]

\[V(\{\vec{p}\}, k_1, \ldots, k_n) = V(\{\vec{p}\}, k_1 + \cdots + k_n) \]

- SM measurements (e.g. W, Z, photon,…): parton distributions, strong coupling, W mass,…

- sensitivity to non-perturbative effects (hadronisation, intrinsic kt) only through transverse recoil

- very little/no sensitivity to multi-parton interactions

- BSM measurements/constraints (e.g. Higgs): light/heavy NP, Yukawa couplings,…

- Theoretically interesting:
 - clean environment to test/calibrate exclusive generators against high perturbative orders
 - Two mechanisms compete in the \(p_t \to 0 \) limit:
 - Sudakov (exponential) suppression when \(k_{t\ell} \sim p_t \ll M \)
 - Azimuthal cancellations (power suppression, dominant) when \(p_t \ll k_{t\ell} \ll M \)

Can we build a more exclusive solution in momentum space?

See also work in [Ebert, Tackmann ’16][Kang, Lee, Vaidya ’17]
Direct space: virtual corrections

- Write all-order cross section as \((V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}|)\)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} |dk_i| M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]
Direct space: virtual corrections

- Write all-order cross section as \(V(\{\hat{p}\}, k_1, \ldots, k_n) = |\bar{k}_{t1} + \cdots + \bar{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\hat{p}_1, \hat{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\hat{p}\}, k_1, \ldots, k_n))
\]

All-order form factor
e.g. [Dixon, Magnea, Sterman ’08]
Direct space: real radiation

- Write all-order cross section as \(V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

- Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

\[
|M(\tilde{k}_a)|^2 = \frac{|M(\tilde{p}_1, \tilde{p}_2, k_a)|^2}{|M_B(\tilde{p}_1, \tilde{p}_2)|^2} = |M(k_a)|^2
\]

\[
|M(\tilde{k}_a, k_b)|^2 = \frac{|M(\tilde{p}_1, \tilde{p}_2, k_a, k_b)|^2}{|M_B(\tilde{p}_1, \tilde{p}_2)|^2} - \frac{1}{2!} |M(k_a)|^2 |M(k_b)|^2
\]

Real emissions

E.g., soft radiation (one log down in hard-collinear case)

\[\ldots + \cdots + \ldots\]
Direct space: real radiation

- Write all-order cross section as \((V(\{\tilde{p}\},k_1,\ldots,k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}|)\)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1,\tilde{p}_2,k_1,\ldots,k_n)|^2 \Theta(v - V(\{\tilde{p}\},k_1,\ldots,k_n))
\]

- Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

E.g.
soft radiation (one log down in hard-collinear case)

\[
|\tilde{M}(k_a)|^2 = \frac{|M(\tilde{p}_1,\tilde{p}_2,k_a)|^2}{|M_B(\tilde{p}_1,\tilde{p}_2)|^2} = |M(k_a)|^2
\]

\[
|\tilde{M}(k_a,k_b)|^2 = \frac{|M(\tilde{p}_1,\tilde{p}_2,k_a,k_b)|^2}{|M_B(\tilde{p}_1,\tilde{p}_2)|^2} - \frac{1}{2!} |M(k_a)|^2 |M(k_b)|^2
\]

\[
\alpha_s L^2
\]
Direct space: real radiation

- Write all-order cross section as \(V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

- Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

e.g.
soft radiation (one log down in hard-collinear case)

\[
|M(\tilde{p}_1, \tilde{p}_2, k_a)|^2 \quad \text{and} \quad \frac{|M(\tilde{p}_1, \tilde{p}_2, k_a)|^2}{|M_{B}(\tilde{p}_1, \tilde{p}_2)|^2} = |M(k_a)|^2
\]

\[
|M(\tilde{p}_1, \tilde{p}_2, k_a, k_b)|^2 = \frac{|M(\tilde{p}_1, \tilde{p}_2, k_a, k_b)|^2}{|M_{B}(\tilde{p}_1, \tilde{p}_2)|^2} - \frac{1}{2!} |M(k_a)|^2 |M(k_b)|^2
\]

\[
\alpha_s L^2
\]

\[
\alpha_s^2 L^4
\]

\[
\alpha_s L^2
\]

\[
\alpha_s^2 L^4
\]
Direct space: real radiation

- Write all-order cross section as \(V(\{\vec{p}\}, k_1, \ldots, k_n) = |\vec{k}_{t1} + \cdots + \vec{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\vec{p}_1, \vec{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\vec{p}\}, k_1, \ldots, k_n))
\]

- Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

\[
|\tilde{M}(k_a)|^2 = \frac{|M(\vec{p}_1, \vec{p}_2, k_a)|^2}{|M_B(\vec{p}_1, \vec{p}_2)|^2} = |M(k_a)|^2
\]

\[
|\tilde{M}(k_a, k_b)|^2 = \frac{|M(\vec{p}_1, \vec{p}_2, k_a, k_b)|^2}{|M_B(\vec{p}_1, \vec{p}_2)|^2} - \frac{1}{2!} |M(k_a)|^2 |M(k_b)|^2
\]

\(\alpha_s L^2\) \quad \alpha_s^2 L^4

this LL is absorbed in the resummation of \(|M(k)|^2\)
All-order subtraction of IRC singularities

- Write all-order cross section as
 \[V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \]

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} (dk_i) |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

Subtraction of the IRC poles and computation of the observable
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between \[\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\vec{p}_1, \vec{p}_2, k_1, \ldots, k_n)|^2 \] and \(\mathcal{V}(\Phi_B) \):
 - introduce a phase-space resolution scale (slicing parameter) \(Q_0 = \epsilon k_{t1} \)
 - real correlated blocks with total transverse momentum \(k_{ti} < \epsilon k_{t1} \) (unresolved) do not modify the observable, and can be ignored in the measurement function
 - compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between \(\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \) and \(\nu(\Phi_B) \):
 - introduce a phase-space resolution scale (slicing parameter) \(Q_0 = \epsilon k_{t1} \)
 - real correlated blocks with total transverse momentum \(k_{ti} < \epsilon k_{t1} \) (unresolved) do not modify the observable, and can be ignored in the measurement function
 - compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

\[
\sum_{n=0}^{\infty} |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \rightarrow |M_B(\tilde{p}_1, \tilde{p}_2)|^2
\]

\[
\times \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_i)|^2 + \int [dk_a][dk_b] |M(k_a, k_b)|^2 \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_i) \\
+ \int [dk_a][dk_b][dk_c] |M(k_a, k_b, k_c)|^2 \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} + \vec{k}_{tc} - \vec{k}_{ti}) \delta(Y_{abc} - Y_i) + \ldots \right) \right\}
\]
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

 - introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

 - real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be ignored in the measurement function

 - compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

$$\prod_{i=1}^{n} \int [dk_i] \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_i)|^2 + \int [dk_a][dk_b] |M(k_a, k_b)|^2 \delta^{(2)}(\tilde{k}_{ta} + \tilde{k}_{tb} - \tilde{k}_{ti}) \delta(Y_{ab} - Y_i) \right) \right.\left. + \int [dk_a][dk_b][dk_c] |M(k_a, k_b, k_c)|^2 \delta^{(2)}(\tilde{k}_{ta} + \tilde{k}_{tb} + \tilde{k}_{tc} - \tilde{k}_{ti}) \delta(Y_{abc} - Y_i) + \ldots \right\} \Theta(\epsilon k_{t1} - k_{ti})$$
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between \(\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \) and \(\mathcal{V}(\Phi_B) \):
 - introduce a phase-space resolution scale (slicing parameter) \(Q_0 = \epsilon k_{t1} \)
 - real correlated blocks with total transverse momentum \(k_{ti} < \epsilon k_{t1} \) (unresolved) do not modify the observable, and can be ignored in the measurement function
 - compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

\[
\prod_{i=1}^{n} \int [dk_i] \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_i)|^2 + \int [dk_a][dk_b] |\tilde{M}(k_a, k_b)|^2 \delta^{(2)}(\tilde{k}_{ta} + \tilde{k}_{tb} - \tilde{k}_{ti}) \delta(Y_{ab} - Y_i) \right) \right. \\
\left. \quad + \int [dk_a][dk_b][dk_c] |\tilde{M}(k_a, k_b, k_c)|^2 \delta^{(2)}(\tilde{k}_{ta} + \tilde{k}_{tb} + \tilde{k}_{tc} - \tilde{k}_{ti}) \delta(Y_{abc} - Y_i) + \cdots \right) \Theta(\epsilon k_{t1} - k_{ti}) \\
\propto \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(\epsilon k_{t1})} R'(k_{t1})
\]
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between \(\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\bar{p}_1, \bar{p}_2, k_1, \ldots, k_n)|^2 \) and \(\mathcal{V}(\Phi_B) \):
 - introduce a phase-space resolution scale (slicing parameter) \(Q_0 = \epsilon k_{t1} \)
 - real correlated blocks with total transverse momentum \(k_{ti} < \epsilon k_{t1} \) (unresolved) do not modify the observable, and can be ignored in the measurement function
 - compute unresolved reals and virtuals analytically in \(D \) dimensions (much easier than full observable)

\[
R(\epsilon k_{t1}) = \sum_{\ell=1}^{2} \int_{\epsilon k_{t1}}^{M} \frac{dk_t}{k_t} R'_\ell(k_t) = \sum_{\ell=1}^{2} \int_{\epsilon k_{t1}}^{M} \frac{dk_t}{k_t} \left(A_\ell(\alpha_s(k_t)) \ln \frac{M^2}{k_t^2} + B_\ell(\alpha_s(k_t)) \right)
\]

- Anomalous dimensions start differing from b-space ones at N^3LL

\[
\prod_{i=1}^{n} \int [dk_i] \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_i)|^2 + \int [dk_a][dk_b] |M(k_a, k_b)|^2 \delta^{(2)}(\bar{k}_{ta} + \bar{k}_{tb} - \bar{k}_{ti}) \delta(Y_{ab} - Y_i) \right. \\
\left. + \int [dk_a][dk_b][dk_c] |\tilde{M}(k_a, k_b, k_c)|^2 \delta^{(2)}(\bar{k}_{ta} + \bar{k}_{tb} + \bar{k}_{tc} - \bar{k}_{ti}) \delta(Y_{abc} - Y_i) + \ldots \right\} \Theta(\epsilon k_{t1} - k_{ti})
\]

\[
\propto \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(\epsilon k_{t1})} R'(k_{t1})
\]
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between \(\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \) and \(\mathcal{V}(\Phi_B) \):
 - introduce a phase-space resolution scale (slicing parameter) \(Q_0 = \epsilon k_{t1} \)
 - real correlated blocks with total transverse momentum \(k_{ti} < \epsilon k_{t1} \) (unresolved) do not modify the observable, and can be ignored in the measurement function
 - compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

\[
\Sigma_{N_1, N_2}^{c_1, c_2} (v) = \left[C_{N_1}^{c_1; T} (\alpha_s(\mu_0)) H(\mu_R) C_{N_2}^{c_2} (\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi}
\times e^{-R(\epsilon k_{t1})} \exp \left\{ - \sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \frac{\alpha_s(k_t)}{\pi} \Gamma_{N_\ell} (\alpha_s(k_t)) + \int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \Gamma_{N_\ell}^{(C)} (\alpha_s(k_t)) \right) \right\}
\]

- DGLAP anomalous dims
- RGE evolution of coeff. functions
- Sudakov radiator: integral of single inclusive block.
All-order subtraction of IRC singularities

- Subtraction of the IRC poles between \(\sum_{n=0}^{\infty} \prod_{i=1}^{n} [dk_i] M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)^2 \) and \(\mathcal{V}(\Phi_B) \):
 - introduce a phase-space resolution scale (slicing parameter) \(Q_0 = \epsilon k_{t1} \)
 - real correlated blocks with total transverse momentum \(k_{ti} < \epsilon k_{t1} \) (unresolved) do not modify the observable, and can be ignored in the measurement function
 - compute unresolved reals and virtuals analytically in D dimensions (much easier than full observable)

\[
\Sigma_{N_1, N_2}^{c_1, c_2}(v) = \left[\mathcal{C}_{N_1}^{c_1:T}(\alpha_s(\mu_0)) H(\mu_R) \mathcal{C}_{N_2}^{c_2}(\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} \exp \left\{ - \sum_{\ell=1}^D \left(\int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \frac{\alpha_s(k_t)}{\pi} \Gamma_{N_\ell}(\alpha_s(k_t)) + \int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \Gamma_{N_\ell}^{(C)}(\alpha_s(k_t)) \right) \right\}
\]

- compute resolved (reals only) in 4 dim. with \(\epsilon \to 0 \) (MC events !)
This is, essentially, a *quasi-exclusive generator* with higher logarithmic accuracy

- e.g. gluon emissions off quark legs

\[
|M(k_i)|^2 + \int [dk_a][dk_b] |\tilde{M}(k_a, k_b)|^2 \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_i) \\
+ \int [dk_a][dk_b][dk_c] |\tilde{M}(k_a, k_b, k_c)|^2 \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} + \vec{k}_{tc} - \vec{k}_{ti}) \delta(Y_{abc} - Y_i) + \ldots
\]
Small transverse momentum limit

- CSS result recovered by simply transforming observable into b-space and integrating over radiation (see backup material)

- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum
e.g. NLL with $\mathcal{L}(k_{t1}) = 1$ for simplicity

\[
\frac{d^3 \Sigma(p_t)}{d^2 p_t d\Phi_B} = \sigma^{(0)}(\Phi_B) \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} R'(k_{t1}) \int dZ \{ R'(k_{t1}), k_i \} \delta^{(2)}(p_t - \sum_{i=1}^{n+1} \vec{k}_{ti})
\]

- Transition from exponential to a power-like suppression at small transverse momentum

\[
\frac{d^2 \Sigma(p_t)}{dp_t d\Phi_B} \approx 4p_t \sigma^{(0)}(\Phi_B) \int_{\Lambda_{QCD}}^{M} \frac{dk_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \approx 2p_t \sigma^{(0)}(\Phi_B) \left(\frac{\Lambda_{QCD}^2}{M^2} \right)^{\frac{16}{25}} \ln \frac{41}{16}
\]
Small transverse momentum limit

- CSS result recovered by simply transforming observable into b-space and integrating over radiation (see backup material)

- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum

e.g. NLL with $\mathcal{L}(k_{t1}) = 1$ for simplicity

$$
\frac{d^3 \Sigma(p_t)}{d^2 p_t d\Phi_B} = \sigma^{(0)}(\Phi_B) \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} R'(k_{t1}) \int dZ[\{R'(k_{t1}), k_i\}] \delta^{(2)}(\vec{p}_t - \sum_{i=1}^{n+1} \vec{k}_{t_i})
$$

as $p_t \to 0$ Sudakov is ''frozen'' at $k_{t1} \gg p_t$
(no exponential suppression)

- Transition from exponential to a power-like suppression at small transverse momentum

$$
\frac{d^2 \Sigma(p_t)}{dp_t d\Phi_B} \simeq 4p_t \sigma^{(0)}(\Phi_B) \int_{\Lambda_{QCD}}^{M} \frac{dk_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \simeq 2p_t \sigma^{(0)}(\Phi_B) \left(\frac{\Lambda_{QCD}^2}{M^2} \right)^{16 \ln(41/16)^{25}} ^{16 \ln(41/16)}
$$
Small transverse momentum limit

- CSS result recovered by simply transforming observable into b-space and integrating over radiation (see backup material)

- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum

\[\frac{d^3 \Sigma(p_t)}{d^2 p_t d \Phi_B} = \sigma^{(0)}(\Phi_B) \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z} \left[\{ R'(k_{t1}), k_i \} \right] \delta^{(2)}(\vec{p}_t - \sum_{i=1}^{n+1} \vec{k}_{ti}) \]

as \(p_t \to 0 \) Sudakov is ”frozen” at \(k_{t1} \gg p_t \) (no exponential suppression)

- Random azimuthal orientation of momenta leads to scaling \(\propto 1/k_{t1}^2 \)

- Transition from exponential to a power-like suppression at small transverse momentum

\[\frac{d^2 \Sigma(p_t)}{dp_t d \Phi_B} \simeq 4p_t \sigma^{(0)}(\Phi_B) \int_{\Lambda_{QCD}}^M \frac{dk_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \simeq 2p_t \sigma^{(0)}(\Phi_B) \left(\frac{\Lambda_{QCD}^2}{M^2} \right)^{16/25} \ln^{41/16} \]
Small transverse momentum limit

- e.g. Z production at 14 TeV

Radiation “freezes” at ~3 GeV
Matching to Fixed Order

- Implementation in a MC code (RadISH) up to N^3LL
 - fully differential in Born kinematics
 - matching to fixed order cumulative distribution, e.g. Higgs:
 \[\sigma_{pp\rightarrow H}^{N^3LO} - \sum_{1-jet}^{\text{NNLO}} (p_t^H) \]
 - [Anastasiou et al. '15-'16]
 - [Boughezal et al. '15]
 - [Caola et al. '15]
 - [Chen et al. '16]

- Additive vs. multiplicative schemes

OLD CHOICE :
\[
\Sigma_{\text{MAT}}(p_t) = (\Sigma_{\text{RES}}(p_t))^{Z} \frac{\Sigma_{\text{FO}}(p_t)}{(\Sigma_{\text{EXP}}(p_t))^{Z}}
\]
\[Z = \left(1 - \left(\frac{p_t}{Q_{\text{match}}}\right)^h\right) \cdot \Theta(Q_{\text{match}} - p_t) \]

R - SCHEME :
\[
\Sigma_{\text{MAT}}(p_t) = \Sigma_{\text{RES}}(p_t) + \Sigma_{\text{FO}}(p_t) - \Sigma_{\text{EXP}}(p_t)
\]
Matching to Fixed Order

- Implementation in a MC code (**RadISH**) up to N^3LL
 - fully differential in Born kinematics
 - matching to fixed order cumulative distribution, e.g. Higgs:

\[
\sigma_{pp\to H}^{N^3LO} - \sum_{1-jet}^{NNLO} (p_t^H)
\]

- Additive vs. multiplicative schemes

OLD CHOICE:
\[
\Sigma_{\text{MAT}}(p_t) = \left(\Sigma_{\text{RES}}(p_t) \right)^Z \left(\Sigma_{\text{FO}}(p_t) \right)^{Z^+} \left(\Sigma_{\text{EXP}}(p_t) \right)^{Z^-}
\]
\[
Z = \left(1 - \frac{p_t}{Q_{\text{match}}} \right)^h \Theta(Q_{\text{match}} - p_t)
\]

NEW CHOICE:
\[
\Sigma_{\text{MAT}}(p_t) = \frac{\Sigma_{\text{RES}}(p_t)}{\mathcal{L}(\mu_F)} \left[\mathcal{L}(\mu_F) \frac{\Sigma_{\text{FO}}(p_t)}{\Sigma_{\text{EXP}}(p_t)} \right]_{\text{EXPANDED}}
\]

OLD CHOICE:
\[
\Sigma_{\text{MAT}}(p_t) = \Sigma_{\text{RES}}(p_t) + \Sigma_{\text{FO}}(p_t) - \Sigma_{\text{EXP}}(p_t)
\]

R – SCHEME:
\[
\Sigma_{\text{MAT}}(p_t) = \Sigma_{\text{RES}}(p_t) + \Sigma_{\text{FO}}(p_t) - \Sigma_{\text{EXP}}(p_t)
\]

References:
- [Boughezal et al. ’15]
- [Caola et al. ’15]
- [Chen et al. ‘16]
Matching to Fixed Order

- Implementation in a MC code (RadISH) up to N^3LL
 - fully differential in Born kinematics
 - matching to fixed order cumulative distribution, e.g. Higgs:
 \[
 \sigma_{pp\rightarrow H}^{N^3LO} - \sum_{1-jet}^{NNLO} (p_t^H)
 \]

- Additive vs. multiplicative schemes

OLD CHOICE:
\[
\Sigma_{\text{MAT}}(p_t) = (\Sigma_{\text{RES}}(p_t))^Z \frac{\Sigma_{\text{FO}}(p_t)}{(\Sigma_{\text{EXP}}(p_t))^Z}
\]
\[
Z = \left(1 - \left(\frac{p_t}{Q_{\text{match}}}\right)^h\right) \Theta(Q_{\text{match}} - p_t)
\]

NEW CHOICE:
\[
\Sigma_{\text{MAT}}(p_t) = \frac{\Sigma_{\text{RES}}(p_t)}{\mathcal{L}(\mu_F)} \left[\mathcal{L}(\mu_F) \frac{\Sigma_{\text{FO}}(p_t)}{\Sigma_{\text{EXP}}(p_t)}\right]_{\text{EXPANDED}}
\]

Higher-order (in a logarithmic sense) constants from FO in the multiplicative scheme. No extra parameters needed
An example: Higgs pT spectrum

- Implementation in a MC code (RadISH) up to N^3LL
 - fully differential in Born kinematics

N^3LL corrections moderate, reduction of uncertainty at small pt

- Good agreement between different matching schemes, choose multiplicative solution at higher order
An example: Higgs pT spectrum

- Important cancellations at $m_H/2$ (!), uncertainties likely underestimated at this scale (long known problem)

- N^3LL corrections amount to a few-% at small p_t, reduction of band below 10 GeV consistently with NLO matching
An example: Higgs pT spectrum

Simulation of fiducial distributions (e.g. H -> gamma gamma)

RadISH+NNLOJET, 13 TeV, m_H = 125 GeV
\[\mu_R = \mu_F = m_H/2, \quad Q = m_H/2 \]
PDF4LHC15 (NNLO) uncertainties with \(\mu_R, \mu_F, Q \) variations

Good convergence across different perturbative orders

[fiducial volume from ATLAS 1407.4222]
An example: DY distributions (pT)

Matching to differential NNLO from NNLOJET, assume N^3LO correction to total XS is zero (i.e. no as^3 constant term included)

(sub-)percent precision in data, theory can reach ~3-5% accuracy...
Other effects important (QED, PDFs, quark masses, hadronisation)

Relevant for W-mass studies
An example: DY distributions (phi*)

RadISH+NNLOJET
8 TeV, pp → Z(→ l⁺l⁻) + X
0.0 < Y_II < 2.4, 116 < m_II < 150 GeV
NNPDF3.0 (NNLO)
uncertainties with \(\mu_R, \mu_F, Q \) variations

\[
\frac{(1/\sigma)d\Sigma}{d\phi^*}
\]

10 \(^2 \) → 10 \(^0 \)

RadISH+NNLOJET
8 TeV, pp → Z(→ l⁺l⁻) + X
1.6 < Y_II < 2.4, 116 < m_II < 150 GeV
NNPDF3.0 (NNLO)
uncertainties with \(\mu_R, \mu_F, Q \) variations

\[
\frac{(1/\sigma)d\Sigma}{d\phi^*}
\]

10 \(^2 \) → 10 \(^0 \)

Similar conclusions for angular distributions

[Data from ATLAS 1512.02192]
Conclusions

• Higher-order resummation can be formulated directly in momentum space without the need for a factorisation for the considered observable

• The approach I briefly outlined is generalised to any rIRC safe observable in two-scale problems
 • Systematic extension to any logarithmic order
 • Efficient implementation in a computer code: e.g. ARES, RadISH
 • Analytic resummation formulated in a language closer to parton showers

• Differential distributions at N^3LL+NNLO
 • Higgs: uncertainties in the 5%-10% range - consistent inclusion of quark-mass effects necessary at this order of accuracy (ongoing study)
 • DY: uncertainties reduced to ~5% across the whole spectrum - good agreement with data in the large-invariant mass bins (study low invariant mass in progress)
 • Improving on this requires the assessment of several effects: NP corrections, quark-mass corrections, QED, theory uncertainties in PDFs, …
Thank you for listening
Squared amplitude decomposition

• Write all-order cross section as \(V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B V(\Phi_B) \sum_{n=0}^{\infty} \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

• Recast all-order squared ME for \(n \) real emissions as iteration of correlated blocks

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

e.g. soft radiation (analogous considerations for hard-collinear)

\[
|M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 = |M_B(\tilde{p}_1, \tilde{p}_2)|^2 \left\{ \left(\frac{1}{n!} \prod_{i=1}^{n} |M(k_i)|^2 \right) + \right. \\
\sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{i\neq a,b} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b)|^2 + \\
\sum_{a>b} \sum_{c>d} \frac{1}{(n-4)!} \left(\prod_{i\neq a,b,c,d} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b)|^2 |\tilde{M}(k_c, k_d)|^2 + \ldots \\
\left. + \sum_{a>b>c} \frac{1}{(n-3)!} \left(\prod_{i\neq a,b,c} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b, k_c)|^2 + \ldots \right\} + \ldots
\]
Squared amplitude decomposition

- Write all-order cross section as \(V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B V(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

- Recast all-order squared ME for \(n \) real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

\(e.g. \) soft radiation (analogous considerations for hard-collinear)

\[
|M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 = |M_B(\tilde{p}_1, \tilde{p}_2)|^2 \left\{ \frac{1}{n!} \prod_{i=1}^{n} |M(k_i)|^2 \right\}^{LL} + \\
\left[\sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{i=1, i\neq a, b}^{n} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b)|^2 \right] + \\
\sum_{a>b} \sum_{c>d} \frac{1}{(n-4)!^2} \left(\prod_{i=1, i\neq a, b, c, d}^{n} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b)|^2 |\tilde{M}(k_c, k_d)|^2 + \cdots \\
+ \left[\sum_{a>b>c} \frac{1}{(n-3)!} \left(\prod_{i=1, i\neq a, b, c}^{n} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b, k_c)|^2 + \cdots \right] + \cdots \right\},
\]
Squared amplitude decomposition

- Write all-order cross section as
 \[V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \]

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} (dk_i) |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

- Recast all-order squared ME for \(n \) real emissions as iteration of **correlated blocks**
- Scaling of the observable in the presence of radiation **must** preserve the above hierarchy

\[|M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 = |M_B(\tilde{p}_1, \tilde{p}_2)|^2 \left\{ \frac{1}{n!} \prod_{i=1}^{n} |M(k_i)|^2 \right\}_{LL} + \]

\[
\sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{i=1}^{n} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b)|^2 \right\}_{NLL} +
\]

\[
\sum_{a>b} \sum_{c>d} \frac{1}{(n-4)!} \left(\prod_{i=1}^{n} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b)|^2 |\tilde{M}(k_c, k_d)|^2 + \ldots \right\}_{NLL} +
\]

\[
+ \left\{ \sum_{a>b>c} \frac{1}{(n-3)!} \left(\prod_{i=1}^{n} |M(k_i)|^2 \right) |\tilde{M}(k_a, k_b, k_c)|^2 + \ldots \right\} + \ldots \right\}_{NLL}.
\]
Squared amplitude decomposition

- Write all-order cross section as \(V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\vec{k}_{t1} + \cdots + \vec{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \sum_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

- Recast all-order squared ME for \(n \) real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

\[|M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 = |M_B(\tilde{p}_1, \tilde{p}_2)|^2 \left\{ \begin{array}{c}
\frac{1}{n!} \prod_{i=1}^{n} |M(k_i)|^2 \\
\text{LL}
\end{array} \right\} + \]

\[\sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{i=1, i \neq a,b}^{n} |M(k_i)|^2 \right) \left| \tilde{M}(k_a, k_b) \right|^2 + \]

\[\sum_{a>b} \sum_{c>d} \frac{1}{(n-4)!} \left(\prod_{i=1, i \neq a,b,c,d}^{n} |M(k_i)|^2 \right) \left| \tilde{M}(k_a, k_b) \left| \tilde{M}(k_c, k_d) \right|^2 + \ldots \right) + \]

\[\sum_{a>b} \sum_{c>d} \frac{1}{(n-3)!} \left(\prod_{i=1, i \neq a,b,c}^{n} |M(k_i)|^2 \right) \left| \tilde{M}(k_a, k_b, k_c) \right|^2 + \ldots + \ldots \right) + \ldots \}

- \begin{array}{c}
\text{LL} \\
\text{NLL} \\
\text{NLL} \\
\text{NNLL}
\end{array}
Squared amplitude decomposition

- Write all-order cross section as \(V(\{\tilde{p}\}, k_1, \ldots, k_n) = |\tilde{k}_{t1} + \cdots + \tilde{k}_{tn}| \)

\[
\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \ldots, k_n))
\]

- Recast all-order squared ME for \(n \) real emissions as iteration of correlated blocks

- Scaling of the observable in the presence of radiation must preserve the above hierarchy

\textit{e.g.} soft radiation (analogous considerations for hard-collinear)

\[
|M(\tilde{p}_1, \tilde{p}_2, k_1, \ldots, k_n)|^2 = |M_B(\tilde{p}_1, \tilde{p}_2)|^2 \left\{ \frac{1}{n!} \prod_{i=1}^{n} |M(k_i)|^2 \right\}_{\text{LL}} + \sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{i=1}^{n} |M(k_i)|^2 \right) \left| \tilde{M}(k_a, k_b) \right|^2_{\text{NLL}}
\]

\[
+ \sum_{a>b} \sum_{c,d\neq a,b} \frac{1}{(n-4)!} \left(\prod_{i=1}^{n} |M(k_i)|^2 \right) \left| \tilde{M}(k_a, k_b, k_c) \right|^2_{\text{NLL}} + \ldots
\]

\[
+ \sum_{a>b>c} \frac{1}{(n-3)!} \left(\prod_{i=1}^{n} |M(k_i)|^2 \right) \left| \tilde{M}(k_a, k_b, k_c, k_d) \right|^2_{\text{NNLL}} + \ldots + \ldots
\]

In addition to this counting, requiring that the observable is recursively IRC safe allows one to construct a (simpler) all-order subtraction scheme.
Monte Carlo formulation

- One great simplification: choice of the resolution variable such that correlated blocks entering at N^kLL in the unresolved radiation only contribute at N^{k+1}LL in the resolved case.

- i.e. we can expand out the cutoff dependence and retain in the Radiator only the terms necessary to cancel the singularities in the resolved radiation.

\[
R(\epsilon k_{t1}) = R(k_{t1}) + R'(k_{t1}) \ln \frac{1}{\epsilon} + \frac{1}{2} R''(k_{t1}) \ln^2 \frac{1}{\epsilon} + \ldots
\]

\[
R'(k_{ti}) = R'(k_{t1}) + R''(k_{t1}) \ln \frac{k_{t1}}{k_{ti}} + \ldots
\]

Expansion is safe since in the resolved radiation $k_{t1}/k_{ti} \sim 1$

e.g. at NLL

\[
\int \frac{dk_{t1}}{k_{t1}} \partial_L \left(-e^{-R(k_{t1})} L(k_{t1}) \right) \prod_{i=2}^{n+1} \frac{1}{n!} \int_{c_{k_{t1}}}^{k_{t1}} \frac{dk_{ti}}{k_{ti}} R'(k_{t1})
\]
Monte Carlo formulation

- One great simplification: choice of the resolution variable such that correlated blocks entering at $N^k\text{LL}$ in the unresolved radiation only contribute at $N^{k+1}\text{LL}$ in the resolved case

- i.e. we can expand out the cutoff dependence and retain in the Radiator only the terms necessary to cancel the singularities in the resolved radiation

$$R(\epsilon k_{t1}) = R(k_{t1}) + R'(k_{t1}) \ln \frac{1}{\epsilon} + \frac{1}{2} R''(k_{t1}) \ln^2 \frac{1}{\epsilon} + \ldots$$

$$R'(k_{ti}) = R'(k_{t1}) + R''(k_{t1}) \ln \frac{k_{t1}}{k_{ti}} + \ldots$$

- Corrections beyond NLL are obtained as follows

 - Add subleading effects in the Sudakov radiator and constants

 - Correct a fixed number of the NLL resolved emissions:

 - only one at NNLL
 - two at $N^3\text{LL}$
 - ...

Expansion is safe since in the resolved radiation $k_{t1}/k_{ti} \sim 1$

-e.g. at NNLL see:
Banfi, PM, Salam, Zanderighi '12
Banfi, McAslan, PM, Zanderighi '14-'16
Numerical implementation: **RadISH**

- Since the transverse momenta of the *resolved* reals are of the same order, we can expand the whole integrand about \(k_{ti} \sim k_{t1} \) up to the desired logarithmic accuracy.
- This expansion allows us to compute higher-order corrections to the NLL *resolved* reals by simply including one correction at a time.

e.g. expansion up to NLL

\[
\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{d k_{t1}}{k_{t1}} \frac{d \phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{N^3LL}(k_{t1}) \right) \int dZ([R', k_i]) \Theta(v - V([\bar{p}], k_1, \ldots, k_{n+1}))
\]

\[
\mathcal{L}_{N^3LL}(k_{t1}) = \sum_{c,c'} \frac{d|M_B|}{d\Phi_B} \sum_{i,j} \int \frac{dz_1}{x_1} \int \frac{dz_2}{x_2} f_i \left(k_{t1}, \frac{x_1}{z_1} \right) f_j \left(k_{t1}, \frac{x_2}{z_2} \right)
\]

\[
\left\{ \delta_{c_1} \delta_{c_1'} \delta(1-z_1) \delta(1-z_2) \left(1 + \frac{\alpha_s(\mu_R)}{2\pi} H^{(1)}(\mu_R) + \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} H^{(2)}(\mu_R) \right) \right.
\]

\[
+ \frac{\alpha_s(\mu_R)}{2\pi} \frac{1}{1 - 2\alpha_s(\mu_R) \beta_0 L} \left(1 - \alpha_s(\mu_R) \frac{\beta_1}{\beta_0} \ln \frac{1 - 2\alpha_s(\mu_R) \beta_0 L}{1 - 2\alpha_s(\mu_R) \beta_0 L} \right)
\]

\[
\times \left(C^{(1)}_{c_1}(z_1) \delta(1-z_2) \delta_{c_1'} + \{ z_1 \leftrightarrow z_2; c, i \leftrightarrow c', j \} \right)
\]

\[
+ \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} \frac{1}{(1 - 2\alpha_s(\mu_R) \beta_0 L)^2} \left(C^{(2)}_{c_1}(z_1) - 2\pi \beta_0 C^{(1)}_{c_1}(z_1) \ln \frac{M^2}{\mu^2_R} \right) \delta(1-z_2) \delta_{c_1'}
\]

\[
+ \{ z_1 \leftrightarrow z_2; c, i \leftrightarrow c', j \} + \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} \frac{1}{(1 - 2\alpha_s(\mu_R) \beta_0 L)^2} \left(C^{(1)}_{c_1}(z_1) C^{(1)}_{c_1'}(z_2) + G^{(1)}_{c_1}(z_1) G^{(1)}_{c_1'}(z_2) \right)
\]

\[
+ \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} H^{(1)}(\mu_R) \frac{1}{1 - 2\alpha_s(\mu_R) \beta_0 L} \left(C^{(1)}_{c_1}(z_1) \delta(1-z_2) \delta_{c_1'} + \{ z_1 \leftrightarrow z_2; c, i \leftrightarrow c', j \} \right)
\]

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities.
Numerical implementation: RadISH

- Since the transverse momenta of the resolved reals are of the same order, we can expand the whole integrand about $k_{ti} \sim k_{t1}$ up to the desired logarithmic accuracy.
- This expansion allows us to compute higher-order corrections to the NLL resolved reals by simply including one correction at a time.

\[\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} L_{N_{LL}}(k_{t1}) \right) \int dZ[[R', k_i]] \Theta(v - V(\{p}, k_1, \ldots, k_{n+1})) \]

\[k_{ti}/k_{t1} = \zeta_i = O(1) \]

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities.
- The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

\[\int dZ[[R', k_i]]G(\{p}, \{k_i\}) = \epsilon^{R'(k_{t1})} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} d\zeta_i \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(k_{t1})G(\{p}, k_1, \ldots, k_{n+1}) \]
Numerical implementation: RadISH

- Since the transverse momenta of the resolved reals are of the same order, we can expand the whole integrand about $k_{ti} \sim k_{t1}$ up to the desired logarithmic accuracy.

- This expansion allows us to compute higher-order corrections to the NLL resolved reals by simply including one correction at a time.

 e.g. expansion up to NNLL

 \[
 \frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} L_{N^3\text{LL}}(k_{t1}) \right) \int dZ[\{R', k_i\}] \Theta(v - V(\{p\}, k_1, \ldots, k_{n+1})) \\
 + \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} \int dZ[\{R', k_i\}] \int_0^1 \frac{d\zeta_s}{\zeta_s} \frac{d\phi_s}{2\pi} \left\{ \left(R'(k_{t1}) L_{N^{\text{NNLL}}}(k_{t1}) - \partial_L L_{N^{\text{NNLL}}}(k_{t1}) \right) \\
 \times \left(R''(k_{t1}) \ln \frac{1}{\zeta_s} + \frac{1}{2} R''(k_{t1}) \ln^2 \frac{1}{\zeta_s} \right) - R'(k_{t1}) \left(\partial_L L_{N^{\text{NNLL}}}(k_{t1}) - 2 \frac{\beta_0}{\pi} \alpha_s^2(k_{t1}) \hat{P}^{(0)} \otimes L_{\text{NNLL}}(k_{t1}) \ln \frac{1}{\zeta_s} \right) \right. \\
 \left. + \frac{\alpha_s^2(k_{t1})}{\pi^2} \hat{P}^{(0)} \otimes L_{\text{NNLL}}(k_{t1}) \right\} \Theta(v - V(\{p\}, k_1, \ldots, k_{n+1}, k_s)) - \Theta(v - V(\{p\}, k_1, \ldots, k_{n+1})) \right\}
 \]

 - Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities.

 - The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.
Numerical implementation: **RadISH**

- Since the transverse momenta of the *resolved* reals are of the same order, we can expand the whole integrand about \(k_{ti} \sim k_{t1} \) up to the desired logarithmic accuracy.
- This expansion allows us to compute higher-order corrections to the NLL *resolved* reals by simply including one correction at a time.

\[
\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{N^3LL}(k_{t1}) \right) \int dZ[[R', k_i]] \Theta(v - V([\bar{p}], k_1, \ldots, k_{n+1}))
\]

\[
+ \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} \int dZ[[R', k_i]] \int_0^1 \frac{d\zeta_s}{\zeta_s} \frac{d\phi_s}{2\pi} \left\{ \left(R'(k_{t1}) \mathcal{L}_{NNLL}(k_{t1}) - \partial_L \mathcal{L}_{NNLL}(k_{t1}) \right) \right.
\]

\[
\times \left(R''(k_{t1}) \ln \frac{1}{\zeta_s} + \frac{1}{2} R''(k_{t1}) \ln^2 \frac{1}{\zeta_s} \right) - R'(k_{t1}) \left(\partial_L \mathcal{L}_{NNLL}(k_{t1}) - \frac{2\beta_0}{\pi} \alpha_s^2(k_{t1}) \hat{p}^{(0)} \otimes \mathcal{L}_{NNLL}(k_{t1}) \ln \frac{1}{\zeta_s} \right)
\]

\[
+ \left. \frac{\alpha_s^2(k_{t1})}{\pi^2} \hat{p}^{(0)} \otimes \mathcal{L}_{NNLL}(k_{t1}) \right\}
\]

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities.
- The ensemble of NLL real emissions \(dZ \) is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

\[
\Theta(v - V([\bar{p}], k_1, \ldots, k_{n+1}, k_s)) - \Theta(v - V([\bar{p}], k_1, \ldots, k_{n+1}, k_s) -
\Theta(v - V([\bar{p}], k_1, \ldots, k_{n+1}, k_{s2})) + \Theta(v - V([\bar{p}], k_1, \ldots, k_{n+1}))) + \mathcal{O} \left(\alpha_s^n \ln^{2n-6} \frac{1}{v} \right)
\]
Equivalence to CSS formula

- Hard-collinear emissions off initial-state legs require some care in the treatment of kinematics. Final result reads

\[
\frac{d\Sigma(v)}{dp_t d\Phi_B} = \int_{c_1} \frac{dN_1}{2\pi i} \int_{c_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d|M_B|^2_{c_1, c_2}}{d\Phi_B} f_{N_1}(\mu_0) \frac{d\Sigma_{c_1, c_2}^{N_1, N_2}(v)}{dp_t} f_{N_2}(\mu_0)
\]

\[
\hat{\Sigma}_{c_1, c_2}^{N_1, N_2}(v) = \left[\mathcal{C}_{c_1}^{T}(\alpha_s(\mu_0)) H(\mu_R) \mathcal{C}_{c_2}^{T}(\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t_1}}{k_{t_1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} \left(\Gamma_{N_1}(\alpha_s(k_{t_1})) + \int_0^{2\pi} \frac{d\phi_1}{2\pi} \Gamma_{N_1}(\alpha_s(k_{t_1})) \right)
\]

\[
\times e^{-R(\epsilon k_{t_1})} \exp \left\{ -\sum_{\ell_1=1}^{2} \left(\mathcal{R}_{\ell_1}(k_{t_1}) + \frac{\alpha_s(k_{t_1})}{\pi} \Gamma_{N_1}(\alpha_s(k_{t_1})) + \int_0^{2\pi} \frac{d\phi_1}{2\pi} \Gamma_{N_1}(\alpha_s(k_{t_1})) \right) \right\}
\]

\[
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{\zeta_i} d\zeta_i \int_0^{2\pi} \frac{d\phi_i}{2\pi} \sum_{\ell_1=1}^{2} \left(\mathcal{R}_{\ell_1}(k_{t_1}) + \frac{\alpha_s(k_{t_1})}{\pi} \Gamma_{N_1}(\alpha_s(k_{t_1})) + \int_0^{2\pi} \frac{d\phi_1}{2\pi} \Gamma_{N_1}(\alpha_s(k_{t_1})) \right)
\]

\[
\times \Theta(v - V(\{\hat{p}, k_1, \ldots, k_{n+1}\})),
\]

- Formulation equivalent to b-space result, up to a scheme change. Using the delta representation for the distribution one finds

\[
\frac{d\Sigma(v)}{dp_t d\Phi_B} = \int_{c_1} \frac{dN_1}{2\pi i} \int_{c_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d|M_B|^2_{c_1, c_2}}{d\Phi_B} f_{N_1}(\mu_0) \frac{d\Sigma_{c_1, c_2}^{N_1, N_2}(v)}{dp_t} f_{N_2}(\mu_0) = \]

\[
\delta^{(2)}(\hat{p}_t - (\vec{k}_{t_1} + \ldots + \vec{k}_{t_n})) = \int \frac{d^2\vec{p}_t}{4\pi^2} e^{-i\vec{p}_t \cdot \vec{k}_t} \prod_{i=1}^{n} e^{i\vec{p}_t \cdot \vec{k}_{t_i}}
\]

\[
(1 - J_0(bk_i)) \simeq \Theta(k_t - \frac{b_0}{b}) + \frac{\zeta_3}{12 \partial \ln(M b / b_0)^3} \Theta(k_t - \frac{b_0}{b}) + \ldots
\]

\[
= \sum_{c_1, c_2} \frac{d|M_B|^2_{c_1, c_2}}{d\Phi_B} \int b \frac{dp_t}{k_t} J_0(p_t b) \mathcal{C}_{c_1}^{T}(\alpha_s(b_0 / b)) H(M) \mathcal{C}_{c_2}^{T}(\alpha_s(b_0 / b)) f(b_0 / b)
\]

\[
\times \exp \left\{ -\sum_{\ell=1}^{2} \int_0^M \frac{dk_{t_1}}{k_{t_1}} \mathcal{R}_{\ell}(k_{t_1}) (1 - J_0(bk_{t_1})) \right\}.
\]