A Space–time Analysis of Semi–inclusive Deep Inelastic Scattering on Nuclei

William Brooks, Jorge López
Universidad Técnica Federico Santa María, Valparaíso, Chile

DIS 2018 – Kobe, Japan
April 2018
Space-time perspective of DIS on nuclei

Production length \((L_p)\): distance required for a colored system to evolve into a color singlet system.

"color lifetime"

Formation length \((L_f)\): distance required for a pre-hadron to get fully formed.

FUNDAMENTAL QCD PROCESSES:
- Partonic elastic scattering in medium
- Gluon bremsstrahlung in vacuum and in medium
- Color neutralization
- Hadron formation
By comparing p_T broadening and hadron attenuation in nuclei of different sizes, one can measure the length of the process of color propagation at the femtometer scale.
HERMES data – Observables

Transverse momentum broadening

$$\Delta \langle p_T^2 \rangle = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_p$$

Multiplicity ratio or hadron attenuation

$$R_M = \frac{N_h(Q^2, \nu, z, p_T)/N_e(Q^2, \nu)|_A}{N_h(Q^2, \nu, z, p_T)/N_e(Q^2, \nu)|_p}$$

Simultaneous description of both observables

http://www-hermes.desy.de/notes/pub/publications.html
Geometric model

- Propagating quark causes p_T broadening of final hadron
- Propagating pre-hadron “disappears” when it undergoes an inelastic interaction with cross section σ.
- Implemented as Monte Carlo calculation.

\[
\Delta \langle p_T^2 \rangle = \left\langle q_0 \int_{z_0}^{z_0 + L_p} \rho(x_0, y_0, z) \, dz \right\rangle_{MC}
\]

\[
R_M = \left\langle \exp \left(-\sigma_{hn} \int_{z_0 + L_p}^{r_A} \rho(x_0, y_0, z) \, dz \right) \right\rangle_{MC}
\]

Path of quark is divided into “partonic phase” and “hadronic phase”
Geometric model

- Baseline model implemented with 3 parameters:
 - q_0: sets the scale of p_T broadening
 - Production length L_p: distance over which p_T broadening and energy loss occur. Assumed exponential form.
 - Cross section for pre-hadron to interact with nucleus.
- Interaction point (x_0, y_0, z_0) thrown uniformly in sphere, weighted by $\rho(x_0, y_0, z_0)$.
- **No dynamical information is assumed; it emerges from fit.**

$$\chi^2 = \left(\frac{\text{data} - \text{model}}{\text{uncertainties}} \right)_{p_T\text{-broadening}}^2 + \left(\frac{\text{data} - \text{model}}{\text{uncertainties}} \right)_{\text{multiplicity}}^2$$

Path of quark is divided into “partonic phase” and “hadronic phase”
Model variants

<table>
<thead>
<tr>
<th>Variant</th>
<th>Number of free parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE</td>
<td>4</td>
<td>Free parameters are: q_0, L_p, σ, and energy loss</td>
</tr>
<tr>
<td>BL30</td>
<td>2</td>
<td>Fixed cross-section @ 30 mb, no energy loss</td>
</tr>
<tr>
<td>BLE30</td>
<td>3</td>
<td>Fixed cross-section @ 30 mb</td>
</tr>
</tbody>
</table>

Path of quark is divided into “partonic phase” and “hadronic phase”.
Results: model vs nucleus size $\sim A^{1/3}$

Result for model variant BL30, baseline model at fixed pre-hadron cross-section 30 mb.
Results: model parameters vs \(z_h \)
Transport coefficient

In a simple picture:

\[\hat{q} = \frac{\Delta \langle p_T^2 \rangle}{L_p} \]

Compatible with calculations for p+A physics at the LHC:

\[\hat{q} = 0.075^{+0.015}_{-0.005} \text{ GeV}^2/\text{fm} \]

Average over \(z_h \):

\[\hat{q}(\text{Ne}) = 0.072 \pm 0.006 \text{ GeV}^2/\text{fm} \]
\[\hat{q}(\text{Kr}) = 0.120 \pm 0.010 \text{ GeV}^2/\text{fm} \]
\[\hat{q}(\text{Xe}) = 0.137 \pm 0.011 \text{ GeV}^2/\text{fm} \]

Remarkably successful model, foundational tool in HEP

- Alternative physical picture to pQCD: emission of many gluons in vacuum, string as an average; quantitative
- Successful, but few connections to fundamental QCD
- We can compare some of our results to the Lund String Model, and other results to pQCD
Production length L_p

From the Lund String Model, for the struck quark (in a simple approximation):

$$2\kappa L_p = M_p + \nu \left(1 + \sqrt{1 + \frac{Q^2}{\nu^2}}\right) - 2\nu z$$

Predicted value

$\kappa \sim 1 \text{ GeV/fm}$

We recover the known value of the string constant!

Strong validation of our model

Linear Fit, $\chi^2/\text{NDF} = 1.09$, $\kappa = 0.98 \pm 0.09 \text{ GeV/fm}$

$Q^2 = 2.4 \text{ GeV}^2$, $\nu = 13.1 \text{ GeV}$
Nuclear size dependent L_p

Other parametrization for the production length can be assumed: $L_p = L_0 + c_1A^{1/3} + c_2A^{2/3}$

No nuclear size dependence for L_p is observed. Future data could provide more insights into this.
Estimations for future experiments

Space-time analysis and Lund string model provide close estimates for L_p for future experiments with assumptions of Q^2, ν.
Summary

- We extract the characteristic production time of π^+ HERMES data using a geometric model.
- The model describes transverse momentum broadening and multiplicity ratios simultaneously.
- No dynamical information is assumed; it emerges from fit.
- Transport coefficient is compatible with some theoretical predictions.
- We recover the known value of the string constant completely independently, strong support of our model.
- Our approach estimates production length for future experiments using simple kinematical assumptions.
- This is the first measurement of the color lifetime.

Research funded by CONICYT, FONDECYT ANILLO ACT1413 & DGIIP-UTFSM
Additional Slides
Treatment of the data

![Graphs showing HERMES Krypton data and HERMES Krypton with Helium subtracted](image)
Pre-hadron cross-section determination

3 Parameter Fit (BL)

4 Parameter Fit (BLE)

\[\sigma_{ph} \] [mbarn]

\[z_h \]

Uncorrected
He subtracted \(\rho = 0.0 \)
He subtracted \(\rho = -0.5 \)
He subtracted \(\rho = -1.0 \)
Production length L_p

\[\kappa(t + l) = (1 - z)p^+ \]

\[\kappa(t - l) = \frac{m^2}{zp^+} \]

\[2\kappa l = M + \nu \left(1 + \sqrt{1 + Q^2/\nu^2} \right) - 2\nu z \]
Estimations for future experiments

Space-time characteristics of the struck quark

Assume: Single-photon exchange, no quark-pair production

“JLab” example: $Q^2 = 3 \text{ GeV}^2$, $\nu = 3 \text{ GeV}$. ($x_{\text{Bj}} \sim 0.5$)

Struck quark absorbs virtual photon energy ν and momentum $p_{\gamma^*} = |\vec{p}_{\gamma^*}| = \sqrt{(\nu^2 - Q^2)}$.

• Neglect any initial momentum/mass of quark
• Immediately after the interaction, quark mass $m_q = Q = \sqrt{(Q^2)}$.

• Gamma factor is therefore $\gamma = \nu/Q$, beta is $\beta = p_{\gamma^*}/\nu$.

JLab example: $\gamma = 1.73$, $\beta = 0.82$

Rigorous? γ, β allow:
1. extrapolations to EIC kinematics,
2. test of time dilation in CLAS fits, and
3. direct comparison between JLab and HERMES fits
B-L Geometric model description III

\[\langle \Delta p_T^2 \rangle = \langle \hat{q}_0 \int_{z=z_0}^{z=z_0+L_p^*} \rho(x_0, y_0, z) \, dz \rangle_{x_0,y_0,z_0,L_p} \]

\(L_p \) is distributed as exponential
\(x_0, y_0, z_0 \) thrown uniformly in sphere, weighted by \(\rho(x,y,z) \)
\(L_p^* = L_p \) except where truncated by integration sphere

\[\langle R_M \rangle = \langle \exp(-\sigma \int_{z=z_0+L_p}^{z=z_{max}} \rho(x, y, z) \, dx \, dy \, dz) \rangle_{x_0,y_0,z_0,L_p} \]

The above are computed sequentially (same \(x_0, y_0, z_0, L_p \))

Data in \((x,Q^2,z)\) bin: fitted to model, 3 parameters: \(\hat{q}_0, <L_p>, \sigma \)

No dynamical information is assumed; it emerges from fit

Systematic errors: 3% for multiplicity ratio, 4% for \(p_T \) broadening
Comment on the B-L model

I believe that studies of this kind can be carried out at the same level of validity as the estimation of centrality in heavy ion collisions.

This model has the same foundation as the well-known “Glauber Model” used to estimate centrality in heavy ion collisions: the spatial mass distribution of protons and neutrons in the nucleus.
Conclusion: good evidence for the following functional form. The vacuum term L_{p0} is determined, but with large uncertainties. There are hints that may help us to understand color propagation mechanisms at lower and higher z_h. The JLab data should allow a more precise study.

$$L_p(A) = L_{p0} + c_2 A^{2/3}$$
Aims

Quark-Hadron Transition
Discover new fundamental features of hadronization
- Characteristic time distributions
- Mechanisms of color neutralization

Quark-Nucleus Interaction
Understand how color interacts within nuclei
- Partonic interactions with medium (“tomography”)
 - energy loss in-medium: \hat{e}
 - transverse momentum broadening: \hat{q}

Method: struck quark from DIS probes nuclei of different sizes
Comparison of Color Propagation in Three Processes

DIS

D-Y

RHI Collisions

cold QCD matter

hot QCD matter