TOPSiDE - Concept of an EIC Detector

José Repond
Argonne National Laboratory

DIS 2018
Kobe, Japan
April 16 – 20, 2018
Electron-Ion Collider EIC

Polarized ep, eA collider

\[\sqrt{s} = 35 - 180 \text{ GeV} \]

Luminosity = \(10^{34} \text{ cm}^{-2} \text{s}^{-1}\)

Two possible sites

Brookhaven → eRHIC
Jefferson lab → JLEIC

Scientific goals

Study of perturbative & non-perturbative QCD
Tomography (including transverse dimension) of the nucleon, nuclei
Understanding the nucleon spin
Discovery of gluon saturation...

Construction to start in 2025

Nuclear physics community optimistic about its realization
CD0 expected in FY2019 (making it a project)

J. Repond: TOPSiDE
● To achieve the EIC physics goals we need

100% acceptance for all particles produced (acceptance is luminosity!)
Excellent momentum/energy resolution
PID for all particles

→ This requires full integration of the central, forward detectors and the beamline

● Particle list at MC hadron level

<table>
<thead>
<tr>
<th>Particle ID</th>
<th>P_x</th>
<th>P_y</th>
<th>P_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (e-)</td>
<td>-0.743</td>
<td>-0.636</td>
<td>-4.842</td>
</tr>
<tr>
<td>321 (K+)</td>
<td>0.125</td>
<td>0.798</td>
<td>6.618</td>
</tr>
<tr>
<td>-211 (\pi-)</td>
<td>0.232</td>
<td>0.008</td>
<td>3.776</td>
</tr>
<tr>
<td>-211 (\pi-)</td>
<td>0.151</td>
<td>-0.007</td>
<td>4.421</td>
</tr>
<tr>
<td>211 (\pi+)</td>
<td>0.046</td>
<td>0.410</td>
<td>2.995</td>
</tr>
<tr>
<td>111 (\pi0)</td>
<td>-0.093</td>
<td>0.048</td>
<td>1.498</td>
</tr>
<tr>
<td>2112 (p)</td>
<td>0.115</td>
<td>-0.337</td>
<td>31.029</td>
</tr>
<tr>
<td>211 (\pi+)</td>
<td>0.258</td>
<td>0.145</td>
<td>6.336</td>
</tr>
<tr>
<td>310 (K\textsubscript{s}0)</td>
<td>0.385</td>
<td>-0.408</td>
<td>3.226</td>
</tr>
</tbody>
</table>

● Detector output

We want a detector which provides the same type of information
TOPSiDE – 5D Concept

Timing Optimized PID Silicon Detector for the EIC

Salient features

Symmetric design of the central detector (-3 < η < 3)
Unlike the HERA detectors (ZEUS and H1)
Electrons, photons and hadrons go everywhere

Silicon tracking
Vertex, outer, and forward/backward trackers

Imaging calorimetry with very fine granularity
Silicon ECAL and (gaseous or scintillator) HCAL
Close to 4π coverage

Ultra-fast silicon
10 ps time resolution for Time-of-Flight (PID)

Superconducting solenoid
2.5 – 3 Tesla
Outside the barrel calorimeters

Measure E, x, y, z, t
Salient features

Forward (hadron) direction (3 < \(\eta\) < 5)
- Gaseous RICH for momenta between 10 and 50 GeV/c (within a cone of \(<10^0\))
- Dipole or toroid for momentum measurement
- Ultra-fast silicon for tracking and TOF (PID for momenta up to 10 GeV/c)

Backward (electron) direction (-3 > \(\eta\) > -5)
- Crystal calorimeter for optimal energy resolution
- Luminosity, polarization, low-\(Q^2\) tagging

No additional
- Preshower, TOF, TRD, Cerenkov, muon chambers \(\leftarrow\) Not needed

in front of the calorimeter
Area of silicon \(~1,400 \text{ m}^2\) or $14M @ $1/cm^2
(Compare: CMS HGCAL upgrade \(~600 \text{ m}^2\)
TOPSiDE – 5D Concept

The case for a hermetic (4π) hadron calorimeter

The EIC is a precision machine (at the 1% level)
E_{neutral} is small in average, but there are large fluctuations
Electron ID is needed in the barrel region and is helped by a hadron calorimeter
Background rejection requires hermeticity (detection of all particles)
Kinematic reconstruction needs all hadrons
→ In particular for charged current events (no electron)
→ At medium/large x or low y (where the electron method fails → double angle)

$$\frac{\delta x}{x} = \frac{1}{y} \frac{\delta E_{e}}{E_{e}} = \frac{1}{1-y} \frac{\delta E_{q}}{E_{q}}$$

Special features/challenges of TOPSiDE

● Imaging calorimetry
● Ultra-fast silicon
● Tilted tracking sensors

→ next slides
Imaging Calorimetry

Replace

Tower structure with very fine granularity (lateral and longitudinally)
Few 1,000 channels → few 10,000,000 channels
Option to reduce resolution on single channels to low-bit depth

Technologies developed in past decade

Silicon sensors with 1 x 1 cm\(^2\), 0.5 x 0.5 cm\(^2\) and 0.16 cm\(^2\) pixels
Scintillator strips (4.5 x 0.5 cm\(^2\)) or scintillator pads (3 x 3 cm\(^2\))
Resistive Plate Chambers with 1 x 1 cm\(^2\) pads
Micromegas and GEMs with 1 x 1 cm\(^2\) pads

These technologies have been (mostly) validated
Advantages of Imaging Calorimetry I

Particle ID

Electrons, muons, hadrons → (almost) trivial
Muon system redundant

Software compensation

Typical calorimeters have $e/h \neq 1$
Weighting of individual sub-showers possible
→ significant improvement in $\sigma_{E_{\text{had}}}$

Leakage corrections

Use longitudinal shower information to compensate for leakage
→ significant improvement in $\sigma_{E_{\text{had}}}$
Measure momentum of charged particles exiting calorimeter
Advantages of Imaging Calorimetry II

Gain monitoring

Reconstruct track segments within hadronic showers
Utilize MIP signal to monitor gain
Assess local radiation damage

Identify underlying events

Multiparton interactions generate background of low energy particles
This background can be identified and subtracted (LHC)

Application of Particle Flow Algorithms (PFAs)

Use PFAs to reconstruct the energy of hadronic jets
Particle Flow Algorithms

Attempt to measure the energy/momentum of each particle in a hadronic jet with the detector subsystem providing the best resolution.

<table>
<thead>
<tr>
<th>Particles in jets</th>
<th>Fraction of energy</th>
<th>Measured with</th>
<th>Resolution $[\sigma^2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged</td>
<td>65 %</td>
<td>Tracker</td>
<td>Negligible</td>
</tr>
<tr>
<td>Photons</td>
<td>25 %</td>
<td>ECAL + HCAL</td>
<td>$0.07^2 E_{jet}$</td>
</tr>
<tr>
<td>Neutral Hadrons</td>
<td>10 %</td>
<td>ECAL @ 15%/E</td>
<td>$0.16^2 E_{jet}$</td>
</tr>
<tr>
<td>Confusion</td>
<td>If goal is to achieve a resolution of 30%/E →</td>
<td>≤ $0.24^2 E_{jet}$</td>
<td></td>
</tr>
</tbody>
</table>

PANDORA PFA based on ILD detector concept

Factor ~2 better jet energy resolution than previously achieved

EIC environment: particularly suited for PFAs, due to low particle multiplicity and low momenta.
ULTRA - FAST SILICON

Needed for 5D Concept

Implement in calorimeter and tracker for Particle ID
(\(\pi \) – \(K \) – \(p \) separation)
Resolution of 10 ps \(\rightarrow\) separation up to \(\sim 7 \text{ GeV/c}\)

Current status

Being developed based on the LGAD technology
Best timing resolution about 27 ps

Future

Further improvements ongoing
\(\rightarrow\) Several groups worldwide
Argonne Silicon Development

Testing

Assembly of test bench for silicon sensors started
→ Acquired necessary tools: fast scope, HV, LV supplies, sources, clean space...
Opening for a new postdoc
→ Testing of sensors to start in 1 – 2 months
Participation in testing of sensors (ATLAS upgrade) in Fermilab test beam

Simulation

Simulation of HVCMOS sensors started
Goal is to improve the timing resolution
→ Implementation of additional amplification layer

Time distribution system

Timing jitter of < 10 ps required
Looking into RF technologies

Collaboration with

Argonne HEP (ATLAS), Geneva, Santa Cruz, Fermilab, (Kansas)
Silicon Tracker: Considering tilted sensors

Non Tilted Sensor Planes

- More hits, 25% less material (in X_0)

Tilted Sensor Planes

- More hits, 25% less material (in X_0)

To be implemented in TOPSiDE simulation

Taken from Peter Kostka and Alessandro Polini (LHeC studies)
TOPSiDE in Simulation

Starting point

SiD detector concept developed by ILC community

TOPSiDE

Some initial modifications from SiD

- Longer barrel, lower B-field, shallower calorimeters

No performance tuning yet

(detector optimized for $|\eta| < 3.0$)

Simulation

Entire chain available

→ Event generation, GEANT4, digitization, reconstruction, event display, analysis

Introduced DD4Hep

→ One geometry file for simulation, digitization, reconstruction, analysis

Ongoing replacement of parts difficult to maintain/develop

→ digitization, tracking → generic tracking

Changes to geometry → Development of workflow for ‘rapid detector iteration’
Simulation Studies

Single Particle Resolutions

Generated photons with $1 – 30$ GeV
Spread over most of solid angle

TOF PID using silicon with 10 ps resolution

Photon energy resolution

Determination of TOF Requirement

Using timing information in tracker and ECAL
For each track fit time versus path length

Reconstruction of the F_2 Structure Function

Use MSTW PDF to generate DIS events
Use CTEQ PDF to correct for acceptance
(problem with CTEQ phase space)

Validation of entire simulation tool chain
Number of channels

ECAL

Silicon pixels with an area of 0.25 cm\(^2\)
Total area about 1,400 m\(^2\)
→ 51M channels
→ Resolution per pixel ~14-bit

HCAL

Scintillator pads with an area of 3 x 3 cm\(^2\) with 14-bit/pad resolution or
RPCs with 1 x 1 cm\(^2\) readout pads with 1-bit/pad resolution
Total area about m\(^2\)
→ 3M (Scintillator) -> 26M (RPC) channels

Tracker/RICH

→ <1M channels

Total

Of the order of 55 – 80 M channels
TOPSiDE

Conclusions

Based on silicon
Features ultra-fast silicon, imaging calorimetry → 5D concept
Completely hermetic

Advantages of TOPSiDE

Simplicity of design (limited number of subsystems)
Based on silicon, which is robust (no gas, high voltages, stable operation, radiation hardness)
Excellent kinematic reconstruction
Excellent background rejection (hermeticity)
Minimal ‘dead’ material in front of calorimeters
No additional TOF, TRD, Cerenkov, muon system
Provides list of particles, similar to MC

Next steps

Complete revamping of simulation chain
Implement TOF PID
Tune ECAL sampling structure
Develop Ultra-Fast Silicon Detectors
Backup Slides
TOPSiDE: A detector concept for the EIC

Goal

Measurement and identification of all particles emerging from collisions individually

TOPSiDE concept

4π, multipurpose, hermetic detector
Based mostly on silicon (tracker, calorimeter)
Finely segmented calorimeter \rightarrow Particle flow
Use of ultra-fast silicon (in tracker, calorimeter) for TOF
Large solenoid outside barrel calorimeter
RICH in hadron direction for particle ID ($10 - 50$ GeV/c)
Toroid/dipole in forward direction for momentum measurement

No additional TOF, Cerenkov detectors, transition radiation detectors, muon chambers \rightarrow not needed