Longitudinal-transverse double-spin asymmetry with a $\cos \phi_{s}$ modulation in SIDIS

Wenjuan Mao

School of Physics and Telecommunication Engineering Zhoukou Normal University
Email: wjmao@seu.edu.cn
DIS2018
15-20 April 2018, Kobe University, Japan

1. Formalism
2. Calculation on the structure functions
3. Numerical Estimate at CLAS12 and EIC
4. Summary

Based on Phys. Rev. D 94,074014 (2016)

FORMALISM

Semi-inclusive DIS by longitudinal polarized lepton beam off a transversely polarized nucleon target

$$
e^{\rightarrow}(l)+p^{\uparrow}(P) \rightarrow e\left(l^{\prime}\right)+h\left(P_{h}\right)+X
$$

FORMALISM

The invariants defined as

$$
\begin{aligned}
& x=\frac{Q^{2}}{2 P \cdot q}, \quad y=\frac{P \cdot q}{P \cdot l}, \quad z=\frac{P \cdot P_{h}}{P \cdot q}, \quad \gamma=\frac{2 M x}{Q} \\
& Q^{2}=-q^{2}, \quad s=(P+\ell)^{2}, \quad W^{2}=(P+q)^{2},
\end{aligned}
$$

The ratio of the longitudinal and transverse photon flux (Bacchetta et al., JHEP0702, 093 (2007))

$$
\varepsilon=\frac{1-y-\frac{1}{4} \gamma^{2} y^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} \gamma^{2} y^{2}} .
$$

The general form for the differential cross section with a transversely polarized nucleon target (Bacchetta et al., JHEP0702, 093 (2007))

$$
\begin{array}{rlr}
\frac{d^{6} \sigma}{d x d y d z d \phi_{h} d \phi_{S} d P_{h T}^{2}} \\
= & \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) & \mathrm{A}_{\mathrm{LT}}^{\cos \phi_{S}} \equiv \frac{\mathrm{~F}_{\mathrm{LT}}^{\cos \phi_{\mathrm{S}}}}{\mathrm{~F}_{\mathrm{UU}}} \\
& \times\left|S_{T}\right| \lambda_{e}\left\{\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{s}}\left(x, z, P_{h T}\right)\right. \\
& +\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\left(x, z, P_{h T}\right) & \mathrm{A}_{\mathrm{LT}}^{\cos \left(2 \phi_{\mathrm{h}}-\phi_{S}\right)} \equiv \frac{\mathrm{F}_{\mathrm{LT}}^{\cos \left(2 \phi_{\mathrm{h}}-\phi_{S}\right)}}{\mathrm{F}_{\mathrm{UU}}} \\
& \text { + leading twist terms }\}, \tag{3}
\end{array}
$$

FORMALISM

Sizable SSAs or DSAs cannot be explained by pQCD (Ahmed \& Gehrmann, PLB465, 297 (1999)).

In the (assumed) TMD factorization (Bacchetta, Mulders, Pijlman PLB595, 309 (2004); Bacchetta et al., JHEP0702, 093 (2007))

With the notation (Bacchetta et al., JHEP0702, 093 (2007))

$$
\begin{aligned}
\mathcal{C}[\omega f D]= & x \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{k}_{T}-\boldsymbol{p}_{T}-\boldsymbol{P}_{h T} / z\right) \\
& \times \omega\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{q}\left(x, \boldsymbol{k}_{T}^{2}\right) D^{q}\left(z, \boldsymbol{p}_{T}^{2}\right),
\end{aligned}
$$

The unpolarized structure function $\mathrm{F}_{\mathrm{UU}} \mathrm{can}$ in the be given as

$$
F_{U U}=\mathcal{C}\left[f_{1} D_{1}\right],
$$

FORMALISM

Focus on the $\cos \phi_{\mathrm{S}}$ azimuthal asymmetry, the structure function can be given as

$$
\begin{aligned}
F_{L T}^{\cos \phi_{s}}\left(x, z, P_{h T}\right)= & \frac{2 M}{Q} \mathcal{C}\left\{-\left(x g_{T} D_{1}+\frac{M_{h}}{M} h_{1} \frac{\tilde{E}}{z}\right)\right. \\
& +\frac{\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}}{2 M M_{h}}\left[\left(x e_{T} H_{1}^{\perp}-\frac{M_{h}}{M} g_{1 T} \frac{\tilde{D^{\perp}}}{z}\right)\right. \\
& \left.\left.+\left(x e_{T}^{\perp} H_{1}^{\perp}+\frac{M_{h}}{M} f_{1 T}^{\perp} \frac{\tilde{G^{\perp}}}{z}\right)\right]\right\},
\end{aligned}
$$

- Considering the transverse momentum of the outgoing pion is integrated to ignore the contributions from the Collins function and the twist-3 TMD fragmentation functions $\widetilde{D}^{\perp}, \widetilde{G}^{\perp}$

FORMALISM

After the integral $\int \mathrm{d}^{2} \mathbf{P}_{\mathrm{hT}}$ is performed, the fourfold differential cross section has the form

$$
\begin{aligned}
\frac{d^{4} \sigma}{d x d y d z d \phi_{S}}= & \frac{2 \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \times \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}(x, z) .
\end{aligned}
$$

The collinear counter part of the structure function can be written as

$$
\begin{aligned}
F_{L T}^{\cos \phi_{s}}(x, z)= & \int d^{2} \boldsymbol{P}_{h T} F_{L T}^{\cos \phi_{s}}\left(x, z, P_{h T}\right) \\
= & -x \sum_{q} e_{q}^{2} \frac{2 M}{Q}\left(x g_{T}^{q}(x) D_{1}^{q}(z)\right. \\
& \left.+\frac{M_{h}}{M} h_{1}^{q}(x) \frac{\tilde{E}^{q}(z)}{z}\right) .
\end{aligned}
$$

FORMALISM

The longitudinal-transver spin asymmetry may be defined as

$$
A_{L T} \sim \frac{\sigma\left(+\lambda_{e}, S_{T}\right)-\sigma\left(-\lambda_{e}, S_{T}\right)}{\sigma\left(+\lambda_{e}, S_{T}\right)+\sigma\left(-\lambda_{e}, S_{T}\right)}
$$

Thus, the x -dependent or z -dependent $\cos \phi_{\mathrm{S}}$ asymmetry can be written as

$$
\begin{aligned}
& A_{L T}^{\cos \phi_{s}}(x) \\
& \quad=\frac{\int d y \int d z \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{y^{2}}{2 x}\right) \sqrt{2 \varepsilon(1-\varepsilon)} F_{L T}^{\cos \phi_{s}}(x, z)}{\int d y \int d z \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) F_{U U}(x, z)}, \\
& A_{L T}^{\cos \phi_{s}}(z) \\
& \quad=\frac{\int d x \int d y \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \sqrt{2 \varepsilon(1-\varepsilon)} F_{L T}^{\cos \phi_{s}}(x, z)}{\int d x \int d y \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) F_{U U}(x, z)} .
\end{aligned}
$$

STRUCTURE FUNCTION

From the collinear counter part of the structure function

$$
\begin{aligned}
F_{L T}^{\cos \phi_{S}}(x, z)= & \int d^{2} \boldsymbol{P}_{h T} F_{L T}^{\cos \phi_{S}}\left(x, z, P_{h T}\right) \\
= & -x \sum_{q} e_{q}^{2} \frac{2 M}{Q}\left(x g_{T}^{q}(x) D_{1}^{q}(z)\right. \\
& \left.+\frac{M_{h}}{M} h_{1}^{q}(x) \frac{\tilde{E}^{q}(z)}{z}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \sum_{q} e_{q}^{2} g_{T}^{q}(x) & =g_{1}(x)+g_{2}(x) \\
g_{1}(x) & =\frac{1}{2} \sum_{q} e_{q}^{2} g_{1}^{q}(x) \\
g_{2}(x) & =g_{2}^{W W}(x)+g_{2}^{\mathrm{tw}-3}(x)
\end{aligned}
$$

Here we use the WW (Wandzura-Wilczek) approximation

$$
g_{2} \stackrel{W W}{\approx} g_{2}^{W W}(x)=-g_{1}(x)+\int_{x}^{1} d y \frac{g_{1}(y)}{y},
$$

STRUCTURE FUNCTION

For the genuine twist-3 contribution $g_{2}^{\text {twist-3 }}$, we use the result from V.M. Braun, T. Lautenschlager, A.N. Manashov and B. Pirnay, Phys. Rev. D 83, 094023(2011)
at the reference scale $\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}$ for proton and neutron targets

$$
\begin{align*}
g_{2, p}^{\mathrm{tw}-3}(x)= & 0.0436772\left(\ln x+\bar{x}+\frac{1}{2} \bar{x}^{2}\right)+\bar{x}^{3}(1.57357 \\
& \left.-5.94918 \bar{x}+6.74412 \bar{x}^{2}-2.19114 \bar{x}^{3}\right), \tag{17}\\
g_{2, n}^{\mathrm{tw}-3}(x)= & 0.0655158\left(\ln x+\bar{x}+\frac{1}{2} \bar{x}^{2}\right)+\bar{x}^{3}(0.130996 \\
& \left.-1.12101 \bar{x}+2.31342 \bar{x}^{2}-1.20598 \bar{x}^{3}\right), \tag{18}
\end{align*}
$$

STRUCTURE FUNCTION

In the valence region, applying the isospin symmetry

$$
\begin{aligned}
& g_{2, p}^{\mathrm{tW}-3}(x)=\frac{4}{9} g_{2}^{\mathrm{tW}-3, u}(x)+\frac{1}{9} g_{2}^{\mathrm{tW}-3, d}(x), \\
& g_{2, n}^{\mathrm{tW}-3}(x)=\frac{1}{9} g_{2}^{\mathrm{tw}-3, u}(x)+\frac{4}{9} g_{2}^{\mathrm{tw}-3, d}(x),
\end{aligned}
$$

we obtain the expression for g_{T}^{q}

$$
\begin{aligned}
& g_{T}^{u}(x)=\int_{x}^{1} d y \frac{g_{1}^{u}(y)}{y}+\frac{6}{5}\left(4 g_{2, p}^{\mathrm{tw}-3}(x)-g_{2, n}^{\mathrm{tw}-3}(x)\right) \\
& g_{T}^{d}(x)=\int_{x}^{1} d y \frac{g_{1}^{d}(y)}{y}+\frac{6}{5}\left(4 g_{2, n}^{\mathrm{tw}-3}(x)-g_{2, p}^{\mathrm{tw}-3}(x)\right)
\end{aligned}
$$

STRUCTURE FUNCTION

To estimate the asymmetry, we also need to know the chiral-odd fragmentation function $\widetilde{\mathrm{E}}^{\mathrm{g}}(z)$ (there is still no theoretical or experimental information on it.)

$$
\begin{aligned}
F_{L T}^{\cos \phi_{S}}(x, z)= & \int d^{2} \boldsymbol{P}_{h T} F_{L T}^{\cos \phi_{S}}\left(x, z, P_{h T}\right) \\
= & -x \sum_{q} e_{q}^{2} \frac{2 M}{Q}\left(x g_{T}^{q}(x) D_{1}^{q}(z)\right. \\
& \left.+\frac{M_{h}}{M} h_{1}^{q}(x) \frac{\tilde{E}^{q}(z)}{z}\right)
\end{aligned}
$$

For a rough estimate, we assume
the motion relation

$$
\frac{E^{q}(z)}{z}=\frac{\tilde{E}^{q}(z)}{z}+\frac{m_{q}}{M_{h}} D_{1}^{q}(z),
$$

chiral quark model result

$$
E^{q}(z)=\frac{m_{q}^{\prime}}{M_{h}} \frac{z}{1-z} D_{1}^{q}(z)
$$

$$
\tilde{E}^{q}(z)=\frac{m_{q}^{\prime}}{M_{h}} \frac{z^{2}}{1-z} D_{1}^{q}(z)
$$

STRUCTURE FUNCTION

- For the transversity $h_{1}^{q}(\mathrm{x})$, we adopt the standard parametrization M. Anselmino, M. Boglione et al. Phys. Rev. D 87 094019(2013)

$$
\begin{aligned}
F_{L T}^{\cos \phi_{S}}(x, z)= & \int d^{2} \boldsymbol{P}_{h T} F_{L T}^{\cos \phi_{S}}\left(x, z, P_{h T}\right) \\
= & -x \sum_{q} e_{q}^{2} \frac{2 M}{Q}\left(x g_{T}^{q}(x) D_{1}^{q}(z)\right. \\
& \left.+\frac{M_{h}}{M} h_{1}^{q}(x) \frac{\tilde{E}^{q}(z)}{z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h_{1}^{q}(x)=\frac{1}{2} N_{q}^{T}(x)\left[f_{1}^{q}(x)+g_{1}^{q}(x)\right] \\
& \text { with } \\
& N_{q}^{T}(x)=N_{q}^{T} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha} \beta^{\beta}}
\end{aligned}
$$

For the distribution $\mathrm{f}_{1}^{\mathrm{q}}(\mathrm{x})$, we adopt GRV98 L0 parametrization
For the distribution $g_{1}^{9}(x)$, we adopt GRV2000 LO parametrization
For the fragmentation function $D_{1}^{q}(z)$, we adopt $L 0$ set of the DSS parametrization

FIG. 2. The twist-3 distribution function $x g_{T}^{Q}(x)$ for up and down quarks vs x at $Q^{2}=1 \times \mathrm{GeV}^{2}$.

NUMERICAL ESTIMATE at CLAS12

At CLAS12, the kinematics are as follows

$$
\begin{aligned}
0.072 & <x<0.532, \quad 0.2<z<0.8, \quad E_{e}=11 \mathrm{GeV} \\
W^{2} & >4 \mathrm{GeV}^{2}, \quad 1<Q^{2}<6.3 \mathrm{GeV}^{2}
\end{aligned}
$$

The invariant mass of the photon-nucleon system is

$$
W^{2}=(P+q)^{2} \approx \frac{1-x}{x} Q^{2}
$$

NUMERICAL ESTIMATE at CLAS12

The x - and z - dependent double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\text {cos } \boldsymbol{c}_{s}}$ of π^{+}production in SIDIS at CLAS12.

NUMERICAL ESTIMATE at CLAS12

The x - and z-dependent double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\text {cos } \boldsymbol{c}_{5}}$ of π^{0} production in SIDIS at CLAS12.

NUMERICAL ESTIMATE at CLAS12

The x - and z - dependent double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\text {cosd }}$ of π^{-}production in SIDIS at CLAS12.

NUMERICAL ESTIMATE at EIC

- At EIC, the kinematical cuts are as follows

$$
\begin{array}{ll}
Q^{2}>1 \mathrm{GeV}^{2}, & 0.001<x<0.4, \quad 0.01<y<0.95, \\
0.2<z<0.8, & \sqrt{s}=45 \mathrm{GeV}, \quad W>5 \mathrm{GeV} .
\end{array}
$$

- At the twist-3 level, the effect will be suppressed by $1 / \mathrm{Q}$, since the averaged Q value at EIC is much higher than that at CLAS12

NUMERICAL ESTIMATE at EIC

The x - and z- dependent double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\text {cos } \boldsymbol{c}_{5}}$ of π^{+}production in SIDIS at EIC.

NUMERICAL ESTIMATE at EIC

The x - and z - dependent double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\text {cos }}$ of π^{0} production in SIDIS at EIC.

NUMERICAL ESTIMATE at EIC

The x - and z- dependent double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\cos / \mathrm{s} / \mathrm{of}} \pi^{-}$production in SIDIS at EIC.

The transverse double-spin asymmetries in semi-inclusive DIS at subleading with the TMDs

The structure function at twist-3 level

$$
\begin{aligned}
F_{L T}^{\cos \phi_{s}}\left(x, z, P_{h T}\right)= & \frac{2 M}{Q} \mathcal{C}\left\{-\left(x g_{T} D_{1}+\frac{M_{h}}{M} h_{1} \frac{\tilde{E}}{z}\right)\right. \\
& +\frac{\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}}{2 M M_{h}}\left[\left(x e_{T} H_{1}^{\perp}-\frac{M_{h}}{M} g_{1 T} \frac{\tilde{D^{\perp}}}{z}\right)\right. \\
& \left.\left.+\left(x e_{T}^{\perp} H_{1}^{\perp}+\frac{M_{h}}{M} f_{1 T}^{\perp} \frac{\tilde{G^{\perp}}}{z}\right)\right]\right\},
\end{aligned}
$$

- Use the WW (Wandzura-Wilczek) approximation to ignore the contributions from the twist-3 TMD fragmentation functions

$$
F_{\mathrm{LT}}^{\cos \phi_{s}} \approx \frac{2 M}{Q} \mathcal{C}\left\{-x g_{T} D_{1}-\frac{\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}}{2 z M M_{h}}\left(x e_{T} H_{1}^{\perp}+x e_{T}^{\perp} H_{1}^{\perp}\right)\right\}
$$

Predictions at JLab

Kinematics at JLab 5.5GeV (H. Avakian, Nuovo Cimento Soc. Ital. Fis. C 36, (2013)):

$0.1<x<0.6, \quad 0.4<z<0.7, \quad Q^{2}>1 \mathrm{GeV}^{2}$, $P_{T}>0.05 \mathrm{GeV}, \quad W^{2}>4 \mathrm{GeV}^{2}$.

Predictions at COMPASS

Kinematics at COMPASS 160GeV(M.G. Alekseev et al., Phys. Lett. B 692, 240 (2010)):

$$
\begin{aligned}
0.004 & <x<0.7, \quad 0.1<y<0.9, \quad z>0.2, \\
P_{T} & >0.1 \mathrm{GeV}, \quad Q^{2}>1 \mathrm{GeV}^{2}, \\
W & >5 \mathrm{GeV}, \quad E_{h}>1.5 \mathrm{GeV} .
\end{aligned}
$$

SUMMARY

- We estimate the double-spin asymmetry $\mathrm{A}_{\mathrm{LT}}^{\cos \phi_{s}}$ of charged and neutral pion production in SIDIS at CLAS12 and a future EIC.
- We consider the particular case where the transverse momentum of the finalstate hadron is integrated out.
- We focus on the constributions from the twist-3 distribution function term $g_{T}(x) \mathrm{D}_{1}(\mathrm{z})$ and the twist-3 fragmentation function term $\mathrm{h}_{1}(x) \widetilde{\mathrm{E}}(\mathrm{z})$.
- The asymmetry of pion at CLAS12 is sizable, and $\widetilde{\mathrm{E}}(\mathrm{z})$ can play an important role in the large-z region.

