Jet A_{LL} in PHENIX p+p $\sqrt{s}=510$ GeV

MILAP PATEL
DIS 2018

Outline

- ► Physics Background
 - ▶ Gluon polarization
- ► Experimental Setup
 - ► PHENIX detector
- ▶ Jets at PHENIX

Gluon Spin

- DIS is not directly sensitive to electrically neutral gluons.
 - Need polarized proton-proton collisions to directly study gluons.
- Solution Helicity distribution function $\Delta g(x)$ is measured to find ΔG , the gluon spin contribution. $\Delta G \equiv \int_0^1 \Delta g(x) dx \qquad \text{Where } x = \frac{Gluon \ Momentum}{Proton \ Momentum}$

▶ The $\Delta g(x)$ is found via the longitudinal double spin asymmetry, A_{ii} :

$$A_{LL} = \frac{1}{P_Y P_B} \frac{N^{++} - N^{+-}}{N^{++} + N^{+-}} = \frac{\sum_{AB \to CX} \Delta f_A \Delta f_B \Delta \sigma_{AB \to CX}}{\sum_{AB \to CX} f_A f_B \sigma_{AB \to CX}}$$

Part that is measured

 Δf (f) and $\Delta \sigma$ (σ)are the polarized (unpolarized) parton distribution functions.

PHENIX Detector

- Located at Brookhaven National Lab in RHIC ring.
- Two central arms (East and West) and Muon arms (North and South).
- Covers pseudorapidity range of $|\eta|$ < 0.35 and azimuthal (φ) 90°.
- Magnets in central arm and muon arms.
- Central arm detectors:
 - ▶ DC and PC to track charged particles.
 - ► EMCal to measure energy deposited from electromagnetic showers.

Current Understanding

arXiv:1404.4293

- ▶ RHIC experiments PHENIX and STAR have measured A_{LL} and provide constraint on Δg .
 - ▶ Only STAR has measured jet A_{II} at RHIC.
 - ▶ PHENIX has measurements for pion and eta mesons.
- ▶ The various A_{LL} are fit and used to extract Δg in global analysis.
 - ▶ Jets probe higher x region dominated by STAR, but PHENIX can contribute.
- Current gluon contribution constraint is:

$$\int_{0.05}^{1} \Delta g \ dx \sim 0.2_{-0.07}^{+0.06} \quad (Q^2 = 10 \text{ GeV}^2)$$

Phys. Rev. Lett. 113, 012001 (2014)

Red line is using PHENIX and STAR data until 2009. Black and blue are using older data, which did not include jet asymmetry. RHIC x range \sqrt{s} = 200 GeV is: 0.05 $\leq x \leq$ 0.2.

PHENIX A_{ll}

- ► PHENIX π^0 asymmetry measurement for \sqrt{s} = 510 GeV and 200 GeV
 - ► Low x region down to ~0.01 in 510 GeV
- ▶ Other PHENIX analyses at $\sqrt{s} = 510 \text{ GeV}$:
 - ► Charged pion A_{II}
 - ▶ Direct photon A_{LL}
 - ► MPC π^0 A_{II} (forward measurement, x ~ 10⁻³)
 - ► J/Ψ A_{II}, Phys. Rev. D 94, 112008 (2016)

Phys. Rev. D 93, 011501 (2016)

What are jets?

- Jet is a QCD observable which is a collimated cone of hadrons produced by hadronization of a quark or gluon.
- ▶ Jets in pp are contributed by 2→2 hard scattering from quark-quark (qq), quark-gluon (qg), and gluon-gluon (gg) processes.
 - ► At RHIC kinematic ranges, the *qg* and *gg* processes dominate.

The Feynman diagram of the two processes which dominate at RHIC kinematic ranges. The Δg and Δq are terms which would be in the A_{LL} $\Delta f_{A,B}$ (shown earlier).

Collimated particles are reconstructed as tracks and clusters in detectors.

Jets

- No absolute definition of a jet, since it is just associating the shower of an original hard parton which undergoes hadronization.
 - ▶ Jet reconstruction is a procedure to combine the momenta of the fragments of the original parton, i.e. undoing the fragmentation process.
- Not possible to unambiguously separate which hadrons come from the original parton or from another process.
- ► The anti-k_T algorithm is used, which is an iterative procedure which clusters jets by:

$$d_{ij} = min(\frac{1}{k_{T,i}^2}, \frac{1}{k_{T,j}^2}) \frac{\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2}{R^2}$$

Where d_{ij} is the anti- k_T distance between pair of particles i and j. R = 0.3 is the radius parameter used.

Parton level

 $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

- ▶ By placing k_T in the denominator, it helps ensure that soft particles will cluster with the hard particles.
- ► Fastjet⁺ used for jet reconstruction.

Unfolding

- ► Unfolding corrects for the energy resolution caused by the underlying event fluctuations and detector effects.
 - ▶ Take measured reco p_T distribution of jets and get true p_T distribution of jets.
- Need to use simulations to generate a Response Matrix.
 - ▶ Gives the probability the generated event in true p_T bin to be found in reco p_T bin.
- Simulation software called Pythia was used to generate $p+p\sqrt{s}$ = 510 GeV collision events.
 - ► Turned on all the qq, qg, and gg processes.
- ► Events generated by Pythia are passed through PISA¹, a GEANT3 based software which provides a simulated version of the PHENIX detector.
 - Dead areas are set in the simulation to properly match data.
- ▶ Use Singular Value Decomposition (SVD) method to unfold.

Response Matrix

- Pythia true jets are reconstructed using truth information with anti- k_T , R = 0.3.
- Particles which passed through PISA are used to determine the reconstructed jets.
 - ► This is similar to how the real data is reconstructed, using same cuts.
- ► The Pythia true jet and the PISA reconstructed jet must match to R < 0.3.
 - The corresponding p_{T,True} vs. p_{T,Reco} is the Response Matrix.

An example response matrix.

SVD Unfolding

- Singular Value Decomposition (SVD) is the method used to unfold using a software package called RooUnfold.
- Inputs needed:
 - ▶ The reco p_T jets (from data).
 - Response matrix (from simulation).
 - ▶ Total true p_T jets found (from Pythia, for proper scaling).
- Outputs the true p_T jets of data.
- SVD unfolding needs a proper regularization parameter (kReg) when doing matrix inversion.
 - Otherwise sensitive to statistical fluctuations.

The plot gives hint of which kReg should be chosen. The value where the plot stabilizes before a large drop-off is chosen. Don't want to choose too high of a kReg to avoid sensitivity to statistical fluctuations.

10.1103/PhysRevLett.116.122301

Jets at PHENIX

 Jet unfolding procedure follows previous PHENIX jet analyses.

- (a) Measured anti-kt, R = 0.3 jet yields in d+Au at different centralities.
- b) p+p data and perturbative QCD calculation are dividided by a fit to the data.

Analysis Status

- Currently working on understand systematics.
- Hoping to publish results this summer.
 - Provide PHENIX Jet A_{LL} for global fits to better constrain Δg.

Future at fsPHENIX

- Upgraded fsPHENIX will be better equipped to measure jets.
 - ▶ Hadron calorimeter
 - ► Full azimuthal coverage
 - ► Covers different *x* ranges.
- ▶ WG7, April 17th, 12:40pm
 - ▶ By Itaru Nakagawa

Thank You!

Eta A_{LL}

From 2005 and 2006 PHENIX data.

