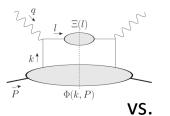
Transversity in inclusive DIS and novel sum rules

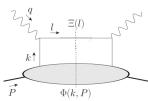
Alberto Accardi

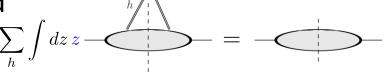
Hampton U. and Jefferson Lab

DIS 2018

Kobe, Japan, Apr 16th-20th, 2018


Based on: Accardi, Bacchetta, PLB 773 (2017) 632


Accardi, Signori, work in progres


Overview

- Inclusive DIS with jet correlators
 - Quarks are not asymptotic states
 - g2: new coupling to transversity...
 - Burkhardt-Cottigham sum rule extended

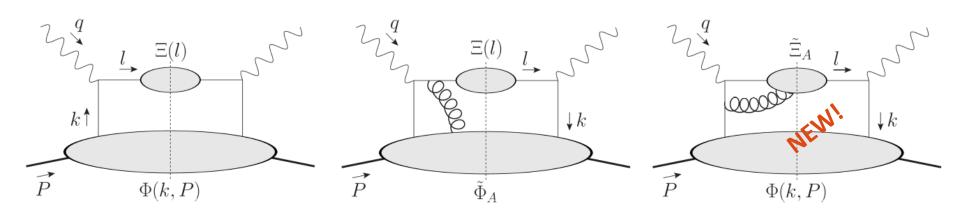
- Novel TMD sum rules
 - New results, old ones revisited
 - Single, and di-hadron FFs

☐ Final thoughts

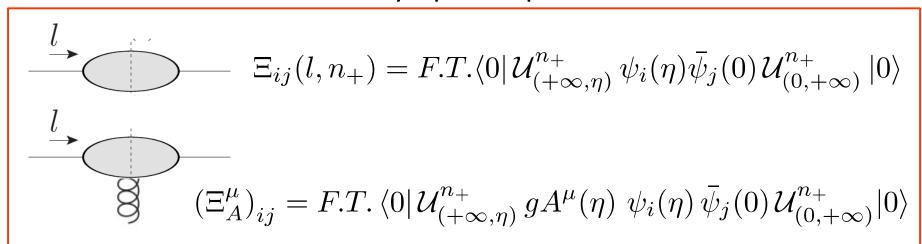
Inclusive DIS with jet correlators

Accardi, Bacchetta, PLB 773 (2017) 632

TMDs in spin ½ targets

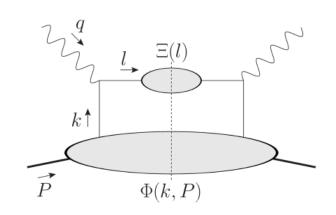

		PARTON SPIN					
	QUARKS	$\gamma^{\scriptscriptstyle +}$	$\gamma^+\gamma_5$	$\gamma^+ \gamma^{\alpha} \gamma_5$			
TARGET SPIN	U			$h_{\!\scriptscriptstyle 1}^{\scriptscriptstyle \perp}$			
	L		(\mathcal{G}_1)	$h_{_{1L}}^{\!\scriptscriptstyle\perp}$			
	Т	$f_{_{1T}}^{\perp}$	\mathcal{G}_{1T}	$(\tilde{h}_{l})h_{lT}^{\perp}$			

→ H.Gao - Monday


- Integrated (collinear) correlators: only circled ones survive
- \square Christ-Lee theorem (1970): h_1 not observable in inclusive DIS
- Not quite true:
 - Vacuum fluctuations can flip the spin of the struck quark
 - Large contribution h_1/x pops up in the $g_2 g_2^{ww}$ structure for

Inclusive DIS with jet correlators

AA, Bacchetta, PLB 773 ('17) 632



Jet correlators: → non-asymptotic quark states

Factorization

- \square At order 1/Q, neglect k^- compared to q^-
 - The cross section only depends on the integrated jet correlator

$$\Xi(l^-, l_T) \equiv \int \frac{dl^2}{2l^-} \,\Xi(l) = \frac{\Lambda}{2l^-} \,\xi_1 + \xi_2 \frac{\rlap/n_-}{2} + \text{ twist-4 terms}$$

 \square Coefficients interpreted in terms of quark spectral functions $J_{1,2}$:

$$\xi_1 = \int d\mu^2 \frac{\mu}{\Lambda} J_1(\mu^2) \equiv \underbrace{\frac{M_q}{\Lambda}}$$
 "Current jet" mass
$$\to \text{can couple to transversity!}$$

$$\xi_2 = \int d\mu^2 J_2(\mu^2) = 1 \quad \longleftarrow \quad \text{Exactly}$$

Positivity constraints imply

$$0 < M_q < \int d\mu^2 \mu J_2(\mu^2) \implies M_q = O(100 \text{ MeV})$$
 Much larger than m_g!

Jet and TMD sum rules

Use the jet correlator sum rule: AA, Bachetta '17 (see also Meissner, Metz, Pitonyak '10)

At TMD level, take Dirac projections:

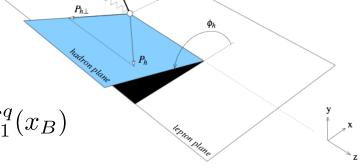
$$\sum_h \int dz d^2 p_{hT} z D_1^h(z,p_{hT}) = \xi_2 = 1$$

$$\sum_h \int dz d^2 p_{hT} E^h(z,p_{hT}) = \xi_1 = \boxed{\frac{M_q}{\Lambda}}$$
 Novel TMD sum rules
$$\sum_h \int dz d^2 p_{hT} \tilde{E}^{q,h}(z,p_{hT}) = \boxed{\frac{M_q - m_q}{\Lambda}}$$
 (see later for more...)

Finally, the DIS cross section

Inclusive DIS

$$\frac{d\sigma}{dx_B dy d\phi_S} \propto \left\{ F_T + \varepsilon F_L + S_{\parallel} \lambda_e \sqrt{1 - \varepsilon^2} F_{LL} \right\}$$


Integrate SIDIS over P_h , use TMD sum rules:

$$F_T = x_B \sum_{q} e_q^2 f_1^q(x_B)$$

$$F_L = 0$$

$$F_{LL} = x_B \sum_{q} e_q^2 g_1^q(x_B)$$

$$F_{LT}^{\cos\phi_S} = -x_B \sum_{q} e_q^2 \frac{2M}{Q} \left(x_B g_T^q(x_B) + \left(\frac{M_q - m_q}{M} h_1^q(x_B) \right) \right)$$

Transversity in inclusive DIS!

 $+ |S_{\perp}| \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S}$

Finally, the DIS cross section

Inclusive DiS $rac{d\sigma}{dx_B\,dy\,d\phi_S} \propto iggl\{F_T + arepsilon F_L + S_\parallel \lambda_e\,\sqrt{1-g}\}$

Deliverables	Observables	What we learn Charactering for the Next QCD From the Next QCD F	der: ntier e glue us all	
Sivers &	SIDIS with	Quantum Interference & Spin-Orbital	016	
unpolarized	Transverse	3D Imaging of quark's motion: valence + sea	516	
TMD quarks	polarization; 3D Imaging of gluon's motion			
and gluon	di-hadron (di-jet)	QCD dynamics in a unprecedented Q^2 (P_{hT}) range		
Chiral-odd	SIDIS with	$3^{\rm rd}$ basic quark PDF: valence + sea, tensor charge		
functions:	Transverse	Novel spin-dependent hadronization effect		
Transversity;	polarization	QCD dynamics in a chiral-odd sector		
Boer-Mulders		with a wide Q^2 (P_{hT}) coverage	Sinos	

Table 2.2: Science Matrix for TMD: 3D structure in transverse momentum space: (uppgolden measurements; (lower) the silver measurements.

$$F_{LT}^{\cos\phi_S} = -x_B \sum_{q} e_q^2 \frac{2M}{Q} \left(x_B g_T^q(x_B) + \frac{M_q - m_q}{M} h_1^q(x_B) \right)$$

Transversity in inclusive DIS!

g2 structure function revisited

AA, Bacchetta, PLB 773 ('17) 632

Using EOM, Lorentz Invariance Relations:

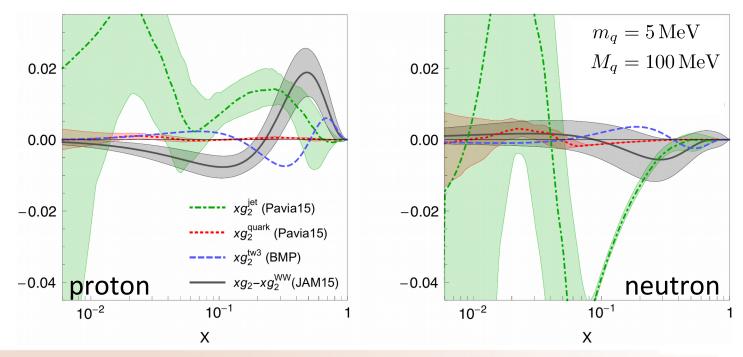
$$g_2(x_B) - g_2^{WW}(x_B) \equiv g_2^{quark} \equiv g_2^{jet}$$

$$= \frac{1}{2} \sum_a e_a^2 \left(g_2^{q,\text{tw3}}(x_B) + \frac{m_q}{M} \left(\frac{h_1^q}{x} \right)^* (x_B) + \frac{M_q - m_q}{M} \frac{h_1^q(x_B)}{x_B} \right)$$
Color force distribution

Transversity in inclusive DIS!

- Consequences:
 - h1 accessible in inclusive DIS! ← Potentially large signal
 - new background to extraction of qGq effects

$$f^*(x) = -f(x) + \int_x^1 \frac{dy}{y} f(y)$$


g2 structure function revisited

AA, Bacchetta, PLB 773 ('17) 632

Using EOM, Lorentz Invariance Relations:

$$g_{2}(x_{B}) - g_{2}^{WW}(x_{B}) \equiv g_{2}^{quark} \equiv g_{2}^{jet}$$

$$= \frac{1}{2} \sum_{a} e_{a}^{2} \left(g_{2}^{q,\text{tw}3}(x_{B}) + \frac{m_{q}}{M} \left(\frac{h_{1}^{q}}{x} \right)^{*} (x_{B}) + \frac{M_{q} - m_{q}}{M} \frac{h_{1}^{q}(x_{B})}{x_{B}} \right)$$

accardi@jlab.org

AA, Bacchetta, PLB 773 ('17) 632

 $lue{}$ Taking moments of ${
m g_2}$ with $M_upprox M_d\equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

→ Broken by quark vacuum fluctuations!

→ see also caveat in original BC paper

Perturbatively: $h_1 \sim x$

Small-x asymptotics: → Sievert – WG6, Thu 11:20

$$g_1^{NS} \sim x^{\epsilon_g} \quad \epsilon_g = -\sqrt{\alpha_s N_c/\pi} \approx -0.56$$

But h_1 is also non-singlet, expect

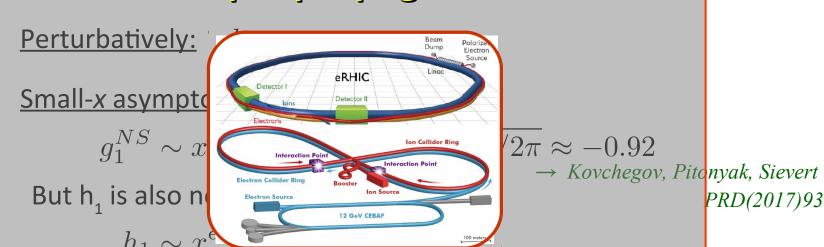
→ Kovchegov, Pitonyak, Sievert PRD(2017)93

$$h_1 \sim x^{\epsilon_h} \quad \epsilon_h = \epsilon_g < 0 \quad !!$$

— Is BC badly broken? 1/Nc corrections non negligible? Or ...?

AA, Bacchetta, PLB 773 ('17) 632

 $lue{}$ Taking moments of $extstyle{} extstyle{} ext$


Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

→ How does spin propagate to small X?

BC paper

— Is BC badly broken? 1/Nc corrections non negligible? Or ...?

AA, Bacchetta, PLB 773 ('17) 632

 $lue{}$ Taking moments of $extstyle{} extstyle{} ext$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

Efremov-Teryaev-Leader

$$\int_0^1 x g_2^{q-\bar{q}}(x) = 2\,M_{"jet"}\, \underbrace{\int_0^1 dx\, h_1^{q-\bar{q}}(x)}_{\text{Tensor charge }\delta_T}$$

→ Novel way to measure the tensor charge!

AA, Bacchetta, PLB 773 ('17) 632

Taking moments of g, with $M_u pprox M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

Efremov-Teryaev-Leader

$$\int_0^1 x g_2^{q-\bar{q}}(x) = 2\,M_{"jet"}\,\int_0^1 dx\,h_1^{q-\bar{q}}(x)$$
 Tensor charge δ_T

$$\begin{array}{c} \textbf{Color polarizability} & \int_0^1 \left[3x^2 g_2(x) - 2x^2 g_1(x) \right] \\ & = d_2 + 3 \, M_{"jet"} \, \int_0^1 dx \, x \, h_1(x) + O(m_q) \\ & = Color force & \text{"pure twist-3"} \\ & - \textit{Burkardt} \, \sim \langle P | \bar{\psi} \gamma^+ F^{+\alpha} \psi | P \rangle \end{array} \qquad \text{"background"}$$

New momentum sum rules

Accardi, Signori, in preparation

Quark-quark TMD sum rules

General jet correlator sum rule: AA, Signori '18

$$\sum_{h} \int d^{2}p_{hT} \frac{dp_{h}^{-}}{2p_{h}^{-}} p_{h}^{\mu} \Delta^{h}(l, p_{h}) = \begin{cases} l^{\mu} \Xi(l) & \mu = - \text{ longitudinal} \\ 0 & \mu = 1, 2 \text{ transverse} \end{cases}$$

For TMDs, take suitable traces:

Longitudinal

Twist-3
$$\begin{cases} \sum_{h,S_h} \int dz \, E_h(z,p_{hT}) = \frac{M_q}{\Lambda} & \sum_{h,S_h} \int dz \, D_h^{\perp(1)}(z) = 0 \\ \sum_{h,S_h} \int dz \, H_h(z) = 0 & \sum_{h,S_h} \int dz \, G_h^{\perp(1)}(z) = 0 \end{cases}$$

$$\sum_{h,S_h} \int dz \, H_h(z) = 0$$
NEW!

Transverse

Twist-2
$$\sum_{h,S_h}\int dz\,z\,D_{1h}(z)=1$$
 $\sum_{h,S_h}\int dz\,z\,H_{1h}^{\perp(1)}(z)=0$

$$\sum_{h,S_h} \int dz \, D_h^{\perp(1)}(z) = 0$$
NEW!

$$\sum_{h,S_h} \int dz \, G_h^{\perp(1)}(z) = 0$$
NEW!

$$f^{(1)}(z) \equiv \int d^2 P_{hT} P_{hT}^2 f(z, P_{hT})$$

Quark-gluon-quark TMD sum rules

Using Equation of Motion relations in q-q sume rules:

$$\left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{E}_h(z) = \frac{M_q - m_q}{\Lambda_{\text{NEW!}}} \\ \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right. \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right] \\ \left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right]$$

$$\left[\begin{array}{l} \sum\limits_{h,S_h} \int dz \, \widetilde{H}_h(z) = 0 \end{array} \right]$$

$$\sum_{h,S_h} \int dz \, \widetilde{D}^{\perp(1)}(z) = \frac{\langle l_T^2 \rangle}{2\Lambda^2} \\ \sum_{h,S_h} \int dz \, \widetilde{G}^{\perp(1)}(z) = 0 \\ \underset{\text{NEW!}}{\text{NEW!}}$$

* in the "hadron frame", P_{hT} =0 ($\langle p_{hT}/z \rangle$ in "parton frame")

Di-hadron sum rules

- Two semi-inclusive hadrons
 - Di-hadron frame

$$\vec{P}_H = \vec{P}_{h1} + \vec{P}_{h2}$$
 $z = P_H^-/l^-$
 $R = \frac{1}{2}(P_{h1} - P_{h2})$ $\zeta = p_1^-/l^-$

Dihadron correlator:

$$\Delta^{2h}(l; P_{2h}, R) = F.T. \sum_{X} \langle 0|\psi(\xi)|P_{2h}, R, X\rangle \langle P_{2h}, R, X|\bar{\psi}(\xi)|0\rangle\rangle$$

- \square Two correlators \rightarrow two sets of sum rules
 - Total P_{2h} : analogous to previous ones
 - Relative R: new!

Di-hadron sum rules

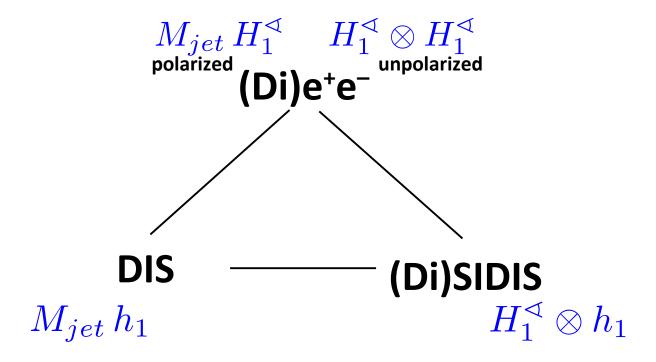
Relative momentum sum rules:

$$\sum_{h_{1,2},S_{1,2}} \int dz d\zeta H_1^{\triangleleft(0,1)}(z,\zeta) = 0$$

$$\sum_{h_{1,2},S_{1,2}} \int dz d\zeta D^{\triangleleft(0,1)}(z,\zeta) = 0$$

$$\sum_{h_{1,2},S_{1,2}} \int dz d\zeta G^{\triangleleft(0,1)}(z,\zeta) = 0$$

$$f^{(0,1)}(z) \equiv \int d^2 P_{hT} R_T^2 f(z, P_{hT}, R_T)$$

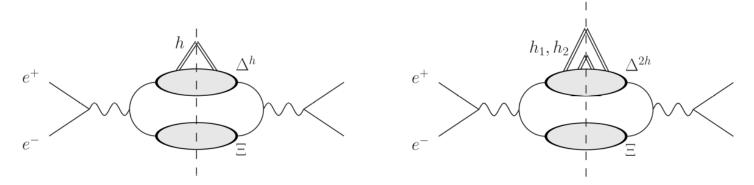

Final thoughts

Final thoughts

- Jet correlators open up new theory and phenomenology
 - Transversity contributes to <u>inclusive</u> g₂
 - Extended BC and ETL sum rules
 - New handle on proton tensor charge
 - Open question: spin transport to small x!
- New momentum sum rules
 - Quark-quark FF (complete up to twist 3); q-g-q (partial at twist 3)
 - DiFF: quark-quark only work in progrees
- How to measure jet correlators?
 - Need a new "universal fit" of M_{iet} , h_1 , H_1^{\perp}

A new "universal" fits

- "Universal fits"
 - Different PDF, FF "sectors" fitted simutaneously
 - e.g. polarized PDFs, and FFs $\rightarrow N.Sato WG1$, Thu 10:20
- Chiral-odd collinear case:


Thank you!

Measuring the jet correlator

Related to confinement, mass generation [*C.Roberts*]

Accardi, Bacchetta, Radici, in prep.

Jet mass M_{iet} can be measured in polarized e⁺ + e⁻:

Needs LT asymmetry in semi-inclusive Lambda production

$$\frac{d\sigma^{L}(e^{+}e^{-} \to \Lambda X)}{d\Omega dz}$$

$$= \frac{3\alpha^{2}}{Q^{2}} \lambda_{e} \sum_{a} e_{a}^{2} \left\{ \frac{C(y)}{2} \lambda_{h} G_{1} + D(y) \left(\mathbf{S}_{T} \right) \cos(\phi_{S}) \frac{2M_{h}}{Q} \left(\frac{G_{T}}{z} + \underbrace{\frac{M_{q} - m_{q}}{M_{h}}} H_{1} \right) \right\}$$

Similarly a LU asymmetry in unpolarized dihadron production

Need polarized e+e- colliders!

Are existing facilities enough?

adapted from Paticle Data Book

	BEPC	HIEPA	super KEKB	ILC	JLab/eEIC ??
E beam [GeV]	1.9	symmetric	4 (e) 7 (e)	250	?
√s [GeV]	3 – 5	2 – 7	10	500	?
polarization	? (beam self- polarization)	One beam	maybe	80% e 60% e ⁺	YES!

- Can we get a (polarized) e+ e- collider at JLab / BNL?
 - At JLab12 ? JLEIC ? eRHIC?
- What else is interesting to study?

Factorization tests for FFs (low s, unpol), ...

// Ideas?