IN2P3

Probing gluon TMDs with quarkonia: Linearly-polarised gluons and J / ψ pairs

J.P. Lansberg
IPN Orsay - Paris-Sud U./Paris Saclay U. -CNRS/IN2P3

April 16-20, 2018, Kobe, Japan
Results obtained in collaboration with W. den Dunnen, M. Echevarria, T. Kasemets, C. Lorcé, C. Pisano, F. Scarpa, M. Schlegel, H.S. Shao, A. Signori

Part I

Generalities on gluon TMDs

Gluon TMDs in unpolarised protons

Gluon TMDs in unpolarised protons

- Gauge-invariant definition:

$$
\left.\Phi_{g}^{\mu v}\left(x, \boldsymbol{k}_{T}, \zeta, \mu\right) \equiv \int \frac{\mathrm{d}(\xi \cdot P) \mathrm{d}^{2} \xi_{T}}{(x P \cdot n)^{2}(2 \pi)^{3}} e^{i\left(x P+k_{T}\right) \cdot \xi}\langle P| F^{n v}(0) \mathcal{U}_{[0, \xi]} F^{n \mu}(\xi) \mathcal{U}_{[\xi, 0]}^{\prime}|P\rangle\right|_{\xi \cdot P^{\prime}=0}
$$

- \mathcal{U} and \mathcal{U}^{\prime} are process dependent gauge links

Gluon TMDs in unpolarised protons

- Gauge-invariant definition:

$$
\left.\Phi_{g}^{\mu v}\left(x, \boldsymbol{k}_{T}, \zeta, \mu\right) \equiv \int \frac{\mathrm{d}(\xi \cdot P) \mathrm{d}^{2} \xi_{T}}{(x P \cdot n)^{2}(2 \pi)^{3}} e^{i\left(x P+k_{T}\right) \cdot \xi}\langle P| F^{n v}(0) \mathcal{U}_{[0, \xi]} F^{n \mu}(\xi) \mathcal{U}_{[\xi, 0]}^{\prime}|P\rangle\right|_{\xi \cdot P^{\prime}=0}
$$

- \mathcal{U} and \mathcal{U}^{\prime} are process dependent gauge links
- Parametrisation:
P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021; D. Boer et al. JHEP 1610 (2016) 013

$$
\Phi_{g}^{\mu v}\left(x, \boldsymbol{k}_{T}, \zeta, \mu\right)=-\frac{1}{2 x}\left\{g_{T}^{\mu v} f_{1}^{g}\left(x, k_{T}, \mu\right)-\left(\frac{k_{T}^{\mu} \boldsymbol{k}_{T}^{v}}{M_{p}^{2}}+g_{T}^{\mu v} \frac{\boldsymbol{k}_{T}^{2}}{2 M_{p}^{2}}\right) h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\right\}+\text { suppr. }
$$

Gluon TMDs in unpolarised protons

- Gauge-invariant definition:

$$
\left.\Phi_{g}^{\mu v}\left(x, \boldsymbol{k}_{T}, \zeta, \mu\right) \equiv \int \frac{\mathrm{d}(\xi \cdot P) \mathrm{d}^{2} \xi_{T}}{(x P \cdot n)^{2}(2 \pi)^{3}} e^{i\left(x P+k_{T}\right) \cdot \xi}\langle P| F^{n v}(0) \mathcal{U}_{[0, \xi]} F^{n \mu}(\xi) \mathcal{U}_{[\xi, 0]}^{\prime}|P\rangle\right|_{\xi \cdot P^{\prime}=0}
$$

- \mathcal{U} and \mathcal{U}^{\prime} are process dependent gauge links
- Parametrisation:
P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021; D. Boer et al. JHEP 1610 (2016) 013

$$
\Phi_{g}^{\mu v}\left(x, \boldsymbol{k}_{T}, \zeta, \mu\right)=-\frac{1}{2 x}\left\{g_{T}^{\mu v} f_{1}^{g}\left(x, k_{T}, \mu\right)-\left(\frac{k_{T}^{\mu} k_{T}^{v}}{M_{p}^{2}}+g_{T}^{\mu v} \frac{\boldsymbol{k}_{T}^{2}}{2 M_{p}^{2}}\right) h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\right\}+\text { suppr. }
$$

- f_{1}^{g} : TMD distribution of unpolarised gluons
- $h_{1}^{\perp g}$: TMD distribution of linearly polarised gluons
[Helicity-flip distribution]
$g g$ fusion in arbitrary unpolarised process [colourless final state] $d \sigma^{g g} \propto$

$g g$ fusion in arbitrary unpolarised process [colourless final state] $d \sigma^{g g} \propto$
$\left(\sum_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}}^{*}\right) \mathcal{C}\left[f_{1}^{f} f_{1}^{8}\right]$
\Rightarrow helicity non-flip, azimuthally independent

$g g$ fusion in arbitrary unpolarised process [colourless final state]

$d \sigma^{g g} \propto$
 F_{1}

$\left(\sum_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}}^{*}\right) \mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]$
\Rightarrow helicity non-flip, azimuthally independent
$+\overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda, \lambda} \hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)}^{F_{2}} \mathcal{C}\left[w_{2} \times h_{1}^{\perp g} h_{1}^{\perp g}\right]$

\Rightarrow double helicity flip, azimuthally independent

$g g$ fusion in arbitrary unpolarised process [colourless final state]

$d \sigma^{g g} \propto$
 F_{1}

$\left(\sum_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}}^{*}\right) \mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]$
\Rightarrow helicity non-flip, azimuthally independent
$+\overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda, \lambda} \hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)}^{F_{2}} \mathcal{C}\left[w_{2} \times h_{1}^{\perp g} h_{1}^{\perp g}\right]$

\Rightarrow double helicity flip, azimuthally independent
$+\overbrace{\left(\sum_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{-\lambda_{a}, \lambda_{b}}^{*}\right)}^{F_{3}} \mathcal{C}\left[w_{3} \times f_{1}^{g} h_{1}^{\perp g}\right]+\{a \leftrightarrow b\}$
\Rightarrow single helicity flip, $\cos (2 \phi)$-modulation

$g g$ fusion in arbitrary unpolarised process [colourless final state]

$d \sigma^{g g} \propto$
 F_{1}

$\left(\sum_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}}^{*}\right) \mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]$
\Rightarrow helicity non-flip, azimuthally independent
$+\overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda, \lambda} \hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)}^{F_{2}} \mathcal{C}\left[w_{2} \times h_{1}^{\perp g} h_{1}^{\perp g}\right]$

\Rightarrow double helicity flip, azimuthally independent
$+\overbrace{\left(\sum_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a}, \lambda_{b}} \hat{\mathcal{M}}_{-\lambda_{a}, \lambda_{b}}^{*}\right)}^{F_{3}} \mathcal{C}\left[w_{3} \times f_{1}^{g} h_{1}^{\perp g}\right]+\{a \leftrightarrow b\}$
\Rightarrow single helicity flip, $\cos (2 \phi)$-modulation
$+\overbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda,-\lambda} \hat{\mathcal{M}}_{-\lambda, \lambda}^{*}\right)}^{F_{4}} \mathcal{C}\left[w_{4} \times h_{1}^{\perp g} h_{1}^{\perp g}\right]$
\Rightarrow double helicity flip, $\cos (4 \phi)$-modulation

Part II

Quarkonium production and TMD
 factorisation applicability/breaking

Approaches to Quarkonium Production

See EPJC (2016) 76:107 for a recent review

Approaches to Quarkonium Production

See EPJC (2016) 76:107 for a recent review

- No consensus on the mechanism at work in quarkonium production

Approaches to Quarkonium Production

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q \bar{Q}$, and its hadronisation into a meson

Approaches to Quarkonium Production

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q \bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation

Approaches to Quarkonium Production

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q \bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:

Approaches to Quarkonium Production

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q \bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
(1) Colour Evaporation Model: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons?

Approaches to Quarkonium Production

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q \bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
(1) Colour Evaporation Model: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons?
(2) Colour Singlet Model: hadronisation w/o gluon emission; each emission $\operatorname{costs} \alpha_{s}\left(m_{Q}\right)$ and occurs at short distances; bleaching at the pair-production time

Approaches to Quarkonium Production

See EPJC (2016) 76:107 for a recent review

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q \bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
(1) Colour Evaporation Model: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons?
(2) Colour Singlet Model: hadronisation w/o gluon emission; each emission costs $\alpha_{s}\left(m_{Q}\right)$ and occurs at short distances; bleaching at the pair-production time
(3) Colour Octet Mechanism (encapsulated in NRQCD): higher Fock states of the mesons taken into account; $Q \bar{Q}$ can be produced in octet states with different quantum \# as the meson; bleaching with semi-soft gluons?

Quarkonium production and TMD factorisation applicability/breaking

Quarkonium production and TMD factorisation applicability/breaking

- $h_{1}^{\perp g}$ receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)

Quarkonium production and TMD factorisation applicability/breaking

- $h_{1}^{\perp g}$ receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make $h_{1}^{\perp g}$ process dependent and even break factorisation
- Different independent $h_{1}^{\perp g}$ functions correspond to specific colour structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027);
See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32

Quarkonium production and TMD factorisation applicability/breaking

- $h_{1}^{\perp g}$ receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make $h_{1}^{\perp g}$ process dependent and even break factorisation
- Different independent $h_{1}^{\perp g}$ functions correspond to specific colour structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027);
See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32
- Quarkonium production in $p p$ collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches)
as opposed to Colour-Singlet contributions

Quarkonium production and TMD factorisation applicability/breaking

- $h_{1}^{\perp g}$ receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make $h_{1}^{\perp g}$ process dependent and even break factorisation
- Different independent $h_{1}^{\perp g}$ functions correspond to specific colour structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027);
See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32
- Quarkonium production in $p p$ collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches)
as opposed to Colour-Singlet contributions
- CS vs. CO contributions should be analysed case by case
[reactions and kinematics]

Quarkonium production and TMD factorisation applicability/breaking

- $h_{1}^{\perp g}$ receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make $h_{1}^{\perp g}$ process dependent and even break factorisation
- Different independent $h_{1}^{\perp g}$ functions correspond to specific colour structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027);
See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32
- Quarkonium production in $p p$ collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches)
as opposed to Colour-Singlet contributions
- CS vs. CO contributions should be analysed case by case
[reactions and kinematics]
- However, if TMD factorisation holds for $H^{0}+$ jet as conjectured by
D. Boer-C. Pisano, there should be no issue for $\mathcal{Q}+\gamma, \mathcal{Q}+Z$ or $\mathcal{Q}+\gamma^{\star}$
D. Boer, C. Pisano PRD 91 (2015) 074024

Part III

Quarkonia and gluon TMDs at hadron colliders

$2 \rightarrow 2$ vs $2 \rightarrow 1$ processes

$2 \rightarrow 2$ vs $2 \rightarrow 1$ processes

- $2 \rightarrow 1$ PROCESS :
- Hard scale can only be the particle mass : $Q^{2} \simeq M^{2}$
\rightarrow does not help to study TMD evolution
- Resulting particle has to be at small $q_{T}\left(q_{T} \ll M\right)$
\rightarrow likely difficult to measure at colliders, in particular for mesons (less for H, W, Z)

$2 \rightarrow 2$ vs $2 \rightarrow 1$ processes

- $2 \rightarrow 1$ PROCESS :
- Hard scale can only be the particle mass : $Q^{2} \simeq M^{2}$
\rightarrow does not help to study TMD evolution
- Resulting particle has to be at small $q_{T}\left(q_{T} \ll M\right)$
\rightarrow likely difficult to measure at colliders, in particular for mesons (less for H, W, Z)
- BACK-то-вACK (LOW q_{T}) $2 \rightarrow 2$ PRocess :
- Produced particles can each have a large \vec{p}_{T} adding up to make a small \vec{q}_{T} for the pair. One can impose $\left|\vec{p}_{T}\right|$ large enough for the particle to be detectable
- This renders the TMD "region" ($q_{T} \ll Q$) virtually as wide as we wish
- Hard scale $Q^{2} \simeq\left(p_{1}+p_{2}\right)^{2}$ can be tuned to study the QCD evolution of the TMDs
- Drawback : yield can be populated by Double Parton Scatterings (DPS)

Low P_{T} quarkonia and TMDs

Low P_{T} quarkonia and TMDs

PHYSICAL REVIEW D 86, 094007 (2012)
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER
Daniël Boer*
Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands
Cristian Pisano ${ }^{+}$
Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

Low P_{T} quarkonia and TMDs

```
        PHYSICAL REVIEW D 86, 094007 (2012)
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER
    Daniël Boer*
Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands
- Low \(P_{T} C\)-even quarkonium production is a good probe of \(h_{1}^{\perp g}\)
- In general, heavy-flavor prod. selects out \(g g\) channels

\section*{Low \(P_{T}\) quarkonia and TMDs}
```

PHYSICAL REVIEW D 86, 094007 (2012)
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

```

\section*{Daniël Boer*}
```

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands
Cristian Pisano
Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

```
- Low \(P_{T} C\)-even quarkonium production is a good probe of \(h_{1}^{\perp g}\)
- In general, heavy-flavor prod. selects out \(g g\) channels
- Affect the low \(P_{T}\) spectra:
\[
\begin{aligned}
& \frac{1}{\sigma} \frac{d \sigma\left(\eta_{Q}\right)}{d \mathbf{q}_{T}^{2}} \propto 1-R\left(\mathbf{q}_{T}^{2}\right) \& \frac{1}{\sigma} \frac{d \sigma\left(\chi_{Q, 0}\right)}{d \mathbf{q}_{T}^{2}} \propto 1+R\left(\mathbf{q}_{T}^{2}\right) \\
& \left(R=\frac{\mathcal{C}\left[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}\right]}{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]}\right)
\end{aligned}
\]


\section*{Low \(P_{T}\) quarkonia and TMDs}
```

PHYSICAL REVIEW D 86, 094007 (2012)
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

```

\section*{Daniël Boer*}
```

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands
Cristian Pisano
Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

```
- Low \(P_{T} C\)-even quarkonium production is a good probe of \(h_{1}^{\perp g}\)
- In general, heavy-flavor prod. selects out \(g g\) channels
- Affect the low \(P_{T}\) spectra:
\[
\begin{aligned}
& \frac{1}{\sigma} \frac{d \sigma\left(\eta_{Q}\right)}{d \mathbf{q}_{T}^{2}} \propto 1-R\left(\mathbf{q}_{T}^{2}\right) \& \frac{1}{\sigma} \frac{d \sigma\left(\chi_{Q, 0}\right)}{d \mathbf{q}_{T}^{2}} \propto 1+R\left(\mathbf{q}_{T}^{2}\right) \\
& \left(R=\frac{\mathcal{C}\left[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}\right]}{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]}\right)
\end{aligned}
\]
- Cannot tune \(Q: Q \simeq m_{\mathcal{Q}}\)

\section*{Low \(P_{T}\) quarkonia and TMDs}
```

PHYSICAL REVIEW D 86, 094007 (2012)
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER
Daniël Boer*
Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

```

\section*{Cristian Pisano}
```

Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

```
- Low \(P_{T} C\)-even quarkonium production is a good probe of \(h_{1}^{\perp g}\)
- In general, heavy-flavor prod. selects out \(g g\) channels
- Affect the low \(P_{T}\) spectra:
\[
\begin{aligned}
& \frac{1}{\sigma} \frac{d \sigma\left(\eta_{Q}\right)}{d \mathbf{q}_{T}^{2}} \propto 1-R\left(\mathbf{q}_{T}^{2}\right) \& \frac{1}{\sigma} \frac{d \sigma\left(\chi_{Q, 0}\right)}{d \mathbf{q}_{T}^{2}} \propto 1+R\left(\mathbf{q}_{T}^{2}\right) \\
& \left(R=\frac{\mathcal{C}\left[w_{2} h_{1}^{1 g} h_{1}^{\perp g}\right]}{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]}\right)
\end{aligned}
\]
- Cannot tune \(Q: Q \simeq m_{\mathcal{Q}}\)
- Low \(P_{T}\) : Experimentally very difficult

First \(\eta_{c}\) production study at collider ever, only released in 2014 for \(P_{T}^{\eta_{c}}>6 \mathrm{GeV}\) LHCb, EPJC75 (2015) 311



\section*{Low \(P_{T}\) quarkonia and TMDs II}
- \(\eta_{c}\) production at one-loop : factorisation holds

\author{
PHYSICAL REVIEW D 88, 014027 (2013)
}

\title{
Transverse momentum dependent factorization for quarkonium production at low transverse momentum
}
J. P. Ma, \({ }^{1,2}\) J. X. Wang, \({ }^{3}\) and S. Zhao \({ }^{1}\)
\({ }^{1}\) Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing I00190, China
\({ }^{2}\) Center for High-Energy Physics, Peking University, Beijing 100871, China
\({ }^{3}\) Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4), Beijing 100049, China

\section*{Low \(P_{T}\) quarkonia and TMDs II}
- \(\eta_{c}\) production at one-loop : factorisation holds

\author{
PHYSICAL REVIEW D 88, 014027 (2013)
}

Transverse momentum dependent factorization for quarkonium production at low transverse momentum
J. P. Ma, \({ }^{1,2}\) J. X. Wang, \({ }^{3}\) and S. Zhao \({ }^{1}\)
\({ }^{1}\) Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100190, China
\({ }^{2}\) Center for High-Energy Physics, Peking University, Beijing 100871, China
\({ }^{3}\) Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4), Beijing 100049, China
- \(\chi_{c 0,2}\) factorisation issue ? \(\leftrightarrow\) Colour Octet - Colour Singlet mixing

Prysics Letters B 737 (2014) 103-108


Contents lists available at ScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb

\(\square\) CrossMark
Breakdown of QCD factorization for P-wave quarkonium production at low transverse momentum
\({ }^{a}\) Store Key Laboratory of Theoretical Physics Instimute of Theorerical Physics, Academia Sinica, P.O. Box 2735, Beijing 100190, China
Center for High-Energy Physics, Peking University, Bejijng 100877. Ching
(Instirute of High Energy Physics, Academia Sinica, P.O. Box 918(4), Bejijing 100049, China
\(\rightarrow\) Low \(q_{T} \chi_{c}\) data exist: empirical check of TMD factorisation possible

\section*{First phenomenological study of \(\eta_{c}\) production with TMDs}
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation

\section*{First phenomenological study of \(\eta_{c}\) production with TMDs}
- Hard coefficient at one loop
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation
J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al.NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027

\section*{First phenomenological study of \(\eta_{c}\) production with TMDs}
- Hard coefficient at one loop
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation
J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al.NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027
- Evolution taken in account at NNLL

\section*{First phenomenological study of \(\eta_{c}\) production with TMDs}
- Hard coefficient at one loop
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation
J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al.NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027
- Evolution taken in account at NNLL
- Considers both the TMD and FO contributions to extend the \(q_{T}\) range up to the LHCb data

\section*{First phenomenological study of \(\eta_{c}\) production with TMDs}
- Hard coefficient at one loop

\author{
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation
}
J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al.NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027
- Evolution taken in account at NNLL
- Considers both the TMD and FO contributions to extend the \(q_{T}\) range up to the LHCb data
- Matching: inverse variance weighted average vs. "improved \(W+Y\) "
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori, PLB 781 (2018) 161; J.C. Collins et al. PRD94 (2016) 034014

\section*{First phenomenological study of \(\eta_{c}\) production with TMDs}
- Hard coefficient at one loop

\author{
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation
}
J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al.NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027
- Evolution taken in account at NNLL
- Considers both the TMD and FO contributions to extend the \(q_{T}\) range up to the LHCb data
- Matching: inverse variance weighted average vs. "improved \(W+Y\) "
M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori, PLB 781 (2018) 161; J.C. Collins et al. PRD94 (2016) 034014


\section*{Processes proposed to study the gluon TMD at \(h h\) colliders}

\section*{Processes proposed to study the gluon TMD at \(h h\) colliders}
- ' \(g g^{\prime} \rightarrow \gamma \gamma\) : J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)
- \(g g \rightarrow(J / \psi, \Upsilon)+\gamma:\) W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- \(g g \rightarrow \eta_{c}+\eta_{c}\) : G.P. Zhang, PRD 90 (2014) 9094011
- ' \(g g^{\prime} \rightarrow H^{0}+\) jet : D. Boer, C. Pisano, PRD 91 (2015) 074024
- \(g g \rightarrow(J / \psi, \Upsilon)+Z / \gamma^{*}:\) JPL , C. Pisano, M. Schlegel, NPB 920 (2017) 192

\section*{Processes proposed to study the gluon TMD at \(h h\) colliders}
- ' \(g g^{\prime} \rightarrow \gamma \gamma\) : J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)
- \(g g \rightarrow(J / \psi, \Upsilon)+\gamma:\) W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- \(g g \rightarrow \eta_{c}+\eta_{c}\) : G.P. Zhang, PRD 90 (2014) 9094011
- \(\quad g g^{\prime} \rightarrow H^{0}+\) jet : D. Boer, C. Pisano, PRD 91 (2015) 074024
- \(g g \rightarrow(J / \psi, \Upsilon)+Z / \gamma^{*}:\) JPL , C. Pisano, M. Schlegel, NPB 920 (2017) 192

None are measured so far ...

\section*{Part IV}

\section*{The case \\ of quarkonium pair production in more details}

\(J / \psi+J / \psi\) at low \(P_{T}^{\psi \psi}\)

\section*{\(J / \psi+J / \psi\) at low \(P_{T}^{\psi \psi}\)}
- J/ \(\psi\) :relatively easy to detect. Already studied by LHCb, CMS, ATLAS \& D0

\section*{\(J / \psi+J / \psi\) at low \(P_{T}^{\psi \psi}\)}
- J/ \(\psi\) :relatively easy to detect. Already studied by LHCb, CMS, ATLAS \& D0
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101
- Negligible \(q \bar{q}\) contributions even at AFTER@LHC \((\sqrt{s}=115 \mathrm{GeV})\) energies
J.P.L., H.S. Shao NPB 900 (2015) 273

\section*{\(J / \psi+J / \psi\) at low \(P_{T}^{\psi \psi}\)}
- J/ \(\psi\) :relatively easy to detect. Already studied by LHCb, CMS, ATLAS \& D0
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101
- Negligible \(q \bar{q}\) contributions even at AFTER@LHC ( \(\sqrt{s}=115 \mathrm{GeV}\) ) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
- Negligible CO contributions, in particular at low \(P_{T}^{\psi \psi}\) [black/dashed curves vs. blue]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP 07. See also N. Yamanaka's tomorrow at 10h10, WG5. (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state

JPL, H.S. Shao PRL 111, 122001 (2013)
\(J / \psi+J / \psi\) at low \(P_{T}^{\psi \psi}\)
- \(J / \psi\) :relatively easy to detect. Already studied by LHCb, CMS, ATLAS \& D0
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101
- Negligible \(q \bar{q}\) contributions even at AFTER@LHC ( \(\sqrt{s}=115 \mathrm{GeV}\) ) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
- Negligible CO contributions, in particular at low \(P_{T}^{\psi \psi}\) [black/dashed curves vs. blue]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP 07. See also N. Yamanaka's tomorrow at 10h10, WG5. (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state JPL, H.S. Shao PRL 111, 122001 (2013)
- In the CMS \& ATLAS acceptances ( \(P_{T}\) cut), small DPS effects, but required by the data at large \(\Delta y\)

\(J / \psi+J / \psi\) at low \(P_{T}^{\psi \psi}\)
- \(J / \psi\) :relatively easy to detect. Already studied by LHCb, CMS, ATLAS \& D0
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101
- Negligible \(q \bar{q}\) contributions even at AFTER@LHC ( \(\sqrt{s}=115 \mathrm{GeV}\) ) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
- Negligible CO contributions, in particular at low \(P_{T}^{\psi \psi}\) [black/dashed curves vs. blue]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP 07. See also N. Yamanaka's tomorrow at 10h10, WG5. (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state JPL, H.S. Shao PRL 111, 122001 (2013)
- In the CMS \& ATLAS acceptances ( \(P_{T}\) cut), small DPS effects, but required by the data at large \(\Delta y\)

- DPS in LHCb data [kinematical distributions well controlled : independent scatterings]

\section*{What is special about double vector onium production?}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684

\section*{What is special about double vector onium production?}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684
In general, the hard scattering coefficients are bounded:
\[
F_{2,3,4} \leq F_{1}
\]

\section*{What is special about double vector onium production?}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684

In general, the hard scattering coefficients are bounded :
\[
F_{2,3,4} \leq F_{1}
\]
\(g g \rightarrow \mathcal{Q}+\mathcal{Q}\) in the limit where \(M_{\psi \psi} \gg M_{\psi}\) and \(\cos \left(\theta_{C S}\right) \rightarrow 0:\)
\[
F_{1} \rightarrow \frac{256 \mathcal{N}}{M_{\mathcal{Q} \mathcal{Q}}^{4} M_{\mathcal{Q}}^{2}} \leftarrow F_{4}, \quad \frac{F_{2}}{F_{1}} \rightarrow \frac{81 M_{\mathcal{Q}}^{4} \cos \left(\theta_{C S}\right)^{2}}{2 M_{\mathcal{Q} \mathcal{Q}}^{4}}, \quad \frac{F_{3}}{F_{1}} \rightarrow \frac{-24 M_{\mathcal{Q}}^{2} \cos \left(\theta_{C S}\right)^{2}}{M_{\mathcal{Q Q}}^{2}}
\]

\section*{What is special about double vector onium production?}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684

In general, the hard scattering coefficients are bounded :
\[
F_{2,3,4} \leq F_{1}
\]
\(g g \rightarrow \mathcal{Q}+\mathcal{Q}\) in the limit where \(M_{\psi \psi} \gg M_{\psi}\) and \(\cos \left(\theta_{C S}\right) \rightarrow 0:\)
\[
F_{1} \rightarrow \frac{256 \mathcal{N}}{M_{\mathcal{Q} \mathcal{Q}}^{4} M_{\mathcal{Q}}^{2}} \leftarrow F_{4}, \quad \frac{F_{2}}{F_{1}} \rightarrow \frac{81 M_{\mathcal{Q}}^{4} \cos \left(\theta_{C S}\right)^{2}}{2 M_{\mathcal{Q} \mathcal{Q}}^{4}}, \quad \frac{F_{3}}{F_{1}} \rightarrow \frac{-24 M_{\mathcal{Q}}^{2} \cos \left(\theta_{C S}\right)^{2}}{M_{\mathcal{Q Q}}^{2}}
\]
\[
F_{4}=F_{1} \text { at large } M_{\mathcal{Q Q}}
\]
\(\Rightarrow \operatorname{di}-J / \psi\) (or di- - ) maximise the observability of \(\cos 4 \phi\) modulations in a kinematical region where data are already taken !

\section*{TMD modelling : \(f_{1}^{g}\) and the relevance of the LHCb data}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684

\section*{TMD modelling : \(f_{1}^{g}\) and the relevance of the LHCb data}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684
- \(f_{1}^{g}\) modelled as a Gaussian in \(\vec{k}_{T}: f_{1}^{g}\left(x, \vec{k}_{T}^{2}\right)=\frac{g(x)}{\pi\left\langle k_{T}^{2}\right\rangle} \exp \left(\frac{-\vec{k}_{T}^{2}}{\left\langle k_{T}^{2}\right\rangle}\right)\) where \(g(x)\) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of \(\left\langle k_{T}^{2}\right\rangle\) by fitting \(\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]\) over the normalised LHCb \(d \sigma / d P_{\psi \psi_{T}}\) spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

\section*{TMD modelling : \(f_{1}^{g}\) and the relevance of the LHCb data}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684
- \(f_{1}^{g}\) modelled as a Gaussian in \(\vec{k}_{T}: f_{1}^{g}\left(x, \vec{k}_{T}^{2}\right)=\frac{g(x)}{\pi\left\langle k_{T}^{2}\right\rangle} \exp \left(\frac{-\vec{k}_{T}^{2}}{\left\langle k_{T}^{2}\right\rangle}\right)\) where \(g(x)\) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of \(\left\langle k_{T}^{2}\right\rangle\) by fitting \(\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]\) over the normalised LHCb \(d \sigma / d P_{\psi \psi_{T}}\) spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb


\section*{TMD modelling : \(f_{1}^{g}\) and the relevance of the LHCb data}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684
- \(f_{1}^{g}\) modelled as a Gaussian in \(\vec{k}_{T}: f_{1}^{g}\left(x, \vec{k}_{T}^{2}\right)=\frac{g(x)}{\pi\left\langle k_{T}^{2}\right\rangle} \exp \left(\frac{-\vec{k}_{T}^{2}}{\left\langle k_{T}^{2}\right\rangle}\right)\)
where \(g(x)\) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of \(\left\langle k_{T}^{2}\right\rangle\) by fitting \(\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]\) over the normalised LHCb \(d \sigma / d P_{\psi \psi_{T}}\) spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb


\section*{Modelling \(h_{1}^{\perp g}\)}

\section*{Modelling \(h_{1}^{\perp g}\)}
- Evolution effect on \(h_{1}^{\perp g} \Rightarrow\) modifications of azimuthal asymmetries

See Y. Zhou's talk earlier this morning

\section*{Modelling \(h_{1}^{\perp g}\)}
- Evolution effect on \(h_{1}^{\perp g} \Rightarrow\) modifications of azimuthal asymmetries

See Y. Zhou's talk earlier this morning
- Evolution not yet studied for any \(2 \rightarrow 2\) gluon fusion process;

Analogy with \(\eta_{b}\) : from 20 to \(80 \%\) changes in \(\mathcal{C}\left[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}\right]\) at \(Q \sim 9 \mathrm{GeV}\)
M. G. Echevarria, T. Kasemets, P. J. Mulders, C. Pisano, JHEP 1507 (2015) 158

\section*{Modelling \(h_{1}^{\perp g}\)}
- Evolution effect on \(h_{1}^{\perp g} \Rightarrow\) modifications of azimuthal asymmetries

See Y. Zhou's talk earlier this morning
- Evolution not yet studied for any \(2 \rightarrow 2\) gluon fusion process;

Analogy with \(\eta_{b}\) : from 20 to \(80 \%\) changes in \(\mathcal{C}\left[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}\right]\) at \(Q \sim 9 \mathrm{GeV}\)
M. G. Echevarria, T. Kasemets, P. J. Mulders, C. Pisano, JHEP 1507 (2015) 158
- We instead use 2 models : Gaussian (Model 1) and positivity bound (Model 2)

Gaussian: D. Boer, W. de Dunnen, C. Pisano, M. Schlegel, W. Vogelsang, PRL 108 (2012) 032002

\section*{Modelling \(h_{1}^{\perp g}\)}
- Evolution effect on \(h_{1}^{\perp g} \Rightarrow\) modifications of azimuthal asymmetries

See Y. Zhou's talk earlier this morning
- Evolution not yet studied for any \(2 \rightarrow 2\) gluon fusion process;

Analogy with \(\eta_{b}\) : from 20 to \(80 \%\) changes in \(\mathcal{C}\left[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}\right]\) at \(Q \sim 9 \mathrm{GeV}\)
M. G. Echevarria, T. Kasemets, P. J. Mulders, C. Pisano, JHEP 1507 (2015) 158
- We instead use 2 models : Gaussian (Model 1) and positivity bound (Model 2)

Gaussian: D. Boer, W. de Dunnen, C. Pisano, M. Schlegel, W. Vogelsang, PRL 108 (2012) 032002


\section*{Expected azimuthal asymmetries}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684

\section*{Expected azimuthal asymmetries}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684
\[
\left\langle\cos n \phi_{\mathrm{CS}}\right\rangle=\frac{\int d \phi_{\mathrm{CS}} \cos n \phi_{\mathrm{CS}} \frac{d \sigma}{d M_{\mathcal{Q Q}} d Y_{\mathcal{Q Q}} d^{2} \vec{q}_{T} d \Omega}}{\int d \phi_{\mathrm{CS}} \frac{d \sigma}{d M_{\mathcal{Q Q}} d Y_{\mathcal{Q Q}} d^{2} \vec{q}_{T} d \Omega}}, n=2,4
\]


- \(\left\langle\cos 4 \phi_{\mathrm{CS}}\right\rangle\) : largest values ever predicted ! (up to \(40 \%\) )

\section*{Expected azimuthal asymmetries}

JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684
\[
\left\langle\cos n \phi_{\mathrm{CS}}\right\rangle=\frac{\int d \phi_{\mathrm{CS}} \cos n \phi_{\mathrm{CS}} \frac{d \sigma}{d M_{\mathcal{Q Q}} d Y_{\mathcal{Q} \mathcal{Q}} d^{2} \vec{q}_{T} d \Omega}}{\int d \phi_{\mathrm{CS}} \frac{d \sigma}{d M_{\mathcal{Q Q}} d Y_{\mathcal{Q Q}} d^{2} \vec{q}_{T} d \Omega}}, n=2,4
\]


- \(\left\langle\cos 4 \phi_{\mathrm{CS}}\right\rangle\) : largest values ever predicted ! (up to \(40 \%\) )
- \(\left\langle\cos 2 \phi_{\mathrm{CS}}\right\rangle\left[\right.\) sign of \(\left.h_{1}^{\perp g}\right]\) : gets large \((30 \%)\) when \(\theta_{\mathrm{CS}}\) moves away from \(\pi / 2\)
- \(\left\langle\cos 4 \phi_{\mathrm{CS}}\right\rangle\) : changes sign when \(\theta_{\mathrm{CS}}\) moves away from \(\pi / 2\) [should be careful with the cuts]

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC [with \(J / \psi\), di-jet, charm pairs]

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC [with \(J / \psi\), di-jet, charm pairs]
- If we do not want to wait for 10 years, LHC can help, right now !

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
[with \(J / \psi\), di-jet, charm pairs]
- If we do not want to wait for 10 years, LHC can help, right now !
- Low \(P_{T} \eta_{c}\) production [below \(M_{\eta_{c}} / 2\) ] is highly challenging, however NLO-NNLL pheno study available soon

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
\[
\text { [with } J / \psi \text {, di-jet, charm pairs] }
\]
- If we do not want to wait for 10 years, LHC can help, right now !
- Low \(P_{T} \eta_{c}\) production [below \(M_{\eta_{c}} / 2\) ] is highly challenging, however NLO-NNLL pheno study available soon
- Back-to-back \(J / \psi+\gamma\) or \(\Upsilon+\gamma\) is certainly at reach [events already on tapes]
- \(f_{1}^{g}\left(x, k_{T}, \mu\right)\) and \(h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\) can be determined separately
- \(Q\) can even be tuned \(\rightarrow\) gluon TMD evolution

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC [with J/ \(\psi\), di-jet, charm pairs]
- If we do not want to wait for 10 years, LHC can help, right now !
- Low \(P_{T} \eta_{c}\) production [below \(M_{\eta_{c}} / 2\) ] is highly challenging, however NLO-NNLL pheno study available soon
- Back-to-back \(J / \psi+\gamma\) or \(\Upsilon+\gamma\) is certainly at reach [events already on tapes]
- \(f_{1}^{g}\left(x, k_{T}, \mu\right)\) and \(h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\) can be determined separately
- \(Q\) can even be tuned \(\rightarrow\) gluon TMD evolution
- Back-to-back \(J / \psi\) pair already measured : first extraction of an effective gluon \(\left\langle k_{T}^{2}\right\rangle\)
- Back-to-back vector onium pair: largest possible \(\cos 4 \phi\) modulations !

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC [with J/ \(\psi\), di-jet, charm pairs]
- If we do not want to wait for 10 years, LHC can help, right now !
- Low \(P_{T} \eta_{c}\) production [below \(M_{\eta_{c}} / 2\) ] is highly challenging, however NLO-NNLL pheno study available soon
- Back-to-back \(J / \psi+\gamma\) or \(\Upsilon+\gamma\) is certainly at reach [events already on tapes]
- \(f_{1}^{g}\left(x, k_{T}, \mu\right)\) and \(h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\) can be determined separately
- \(Q\) can even be tuned \(\rightarrow\) gluon TMD evolution
- Back-to-back \(J / \psi\) pair already measured : first extraction of an effective gluon \(\left\langle k_{T}^{2}\right\rangle\)
- Back-to-back vector onium pair: largest possible \(\cos 4 \phi\) modulations !
- Gluon Sivers effect uncovered by COMPASS; not small

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC [with \(J / \psi\), di-jet, charm pairs]
- If we do not want to wait for 10 years, LHC can help, right now !
- Low \(P_{T} \eta_{c}\) production [below \(M_{\eta_{c}} / 2\) ] is highly challenging, however NLO-NNLL pheno study available soon
- Back-to-back \(J / \psi+\gamma\) or \(\Upsilon+\gamma\) is certainly at reach [events already on tapes]
- \(f_{1}^{g}\left(x, k_{T}, \mu\right)\) and \(h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\) can be determined separately
- \(Q\) can even be tuned \(\rightarrow\) gluon TMD evolution
- Back-to-back \(J / \psi\) pair already measured : first extraction of an effective gluon \(\left\langle k_{T}^{2}\right\rangle\)
- Back-to-back vector onium pair: largest possible \(\cos 4 \phi\) modulations !
- Gluon Sivers effect uncovered by COMPASS; not small compass plb 772 (2017) 854

See also D. Boer, C. Lorcé, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396
- Low \(P_{T} \mathcal{Q}, \mathcal{Q}+\gamma, \mathcal{Q}+\mathcal{Q}\) STSA precision studies are possible with AFTER@LHC

\section*{Conclusions and Outlooks}
- Unpolarised TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC [with \(J / \psi\), di-jet, charm pairs]
- If we do not want to wait for 10 years, LHC can help, right now !
- Low \(P_{T} \eta_{c}\) production [below \(M_{\eta_{c}} / 2\) ] is highly challenging, however NLO-NNLL pheno study available soon
- Back-to-back \(J / \psi+\gamma\) or \(\Upsilon+\gamma\) is certainly at reach [events already on tapes]
- \(f_{1}^{g}\left(x, k_{T}, \mu\right)\) and \(h_{1}^{\perp g}\left(x, k_{T}, \mu\right)\) can be determined separately
- \(Q\) can even be tuned \(\rightarrow\) gluon TMD evolution
- Back-to-back \(J / \psi\) pair already measured : first extraction of an effective gluon \(\left\langle k_{T}^{2}\right\rangle\)
- Back-to-back vector onium pair: largest possible \(\cos 4 \phi\) modulations !
- Gluon Sivers effect uncovered by COMPASS; not small compass plb 772 (2017) 854

See also D. Boer, C. Lorcé, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396
- Low \(P_{T} \mathcal{Q}, \mathcal{Q}+\gamma, \mathcal{Q}+\mathcal{Q}\) STSA precision studies are possible with AFTER@LHC

See my talk at 10:35am (WG7) \(\rightarrow\) link; D. Kikola et al. Few Body Syst. 58 (2017) 139
- \(J / \psi+\gamma\) STSA study might also be possible with STAR if very favourable conditions

JPL, C. Pisano, M. Schlegel, in progress

\section*{Part V}

\section*{Backup}

\section*{\(\mathcal{Q}+\gamma\) at low \(P_{T}^{\psi-\gamma}\)}
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- Unique candidate to pin down the gluon TMDs

\(\mathcal{Q}+\gamma\) at low \(P_{T}^{\psi-\gamma}\)
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- Unique candidate to pin down the gluon TMDs
- Hard scale \(M_{\psi-\gamma}\) (or \(Q_{\psi-\gamma}\) ) can be tuned

\(\mathcal{Q}+\gamma\) at low \(P_{T}^{\psi-\gamma}\)
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- Unique candidate to pin down the gluon TMDs
- Hard scale \(M_{\psi-\gamma}\) (or \(Q_{\psi-\gamma}\) ) can be tuned
- gluon sensitive process [even at large \(x_{F}\) (AFTER@LHC)]

\(\mathcal{Q}+\gamma\) at low \(P_{T}^{\psi-\gamma}\)
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- Unique candidate to pin down the gluon TMDs
- Hard scale \(M_{\psi-\gamma}\) (or \(Q_{\psi-\gamma}\) ) can be tuned
- gluon sensitive process [even at large \(x_{F}\) (AFTER@LHC)]

- With the \(\mathcal{L} \simeq 20 \mathrm{fb}^{-1}\) of \(p p\) data on tape, one expects up to 2000 events
\(\mathcal{Q}+\gamma\) at low \(P_{T}^{\psi-\gamma}\)
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- Unique candidate to pin down the gluon TMDs
- Hard scale \(M_{\psi-\gamma}\) (or \(Q_{\psi-\gamma}\) ) can be tuned
- gluon sensitive process [even at large \(x_{F}\) (AFTER@LHC)]

- With the \(\mathcal{L} \simeq 20 \mathrm{fb}^{-1}\) of \(p p\) data on tape, one expects up to 2000 events
- We define: \(\mathcal{S}_{q_{T}}^{(n)}=\left(\frac{\mathrm{d} \sigma}{\mathrm{d} Q \mathrm{~d} Y \cos \theta_{C S}}\right)^{-1} \int \mathrm{~d} \phi_{C S} \pi \cos \left(n \phi_{C S}\right) \frac{\mathrm{d} \sigma}{\mathrm{d} Q \mathrm{~d}^{2} \vec{q}_{T} \mathrm{~d} \Omega}\)
\(\mathcal{Q}+\gamma\) at low \(P_{T}^{\psi-\gamma}\)
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
- Unique candidate to pin down the gluon TMDs
- Hard scale \(M_{\psi-\gamma}\) (or \(Q_{\psi-\gamma}\) ) can be tuned
- gluon sensitive process [even at large \(x_{F}\) (AFTER@LHC)]

- With the \(\mathcal{L} \simeq 20 \mathrm{fb}^{-1}\) of \(p p\) data on tape, one expects up to 2000 events
- We define: \(\mathcal{S}_{q_{T}}^{(n)}=\left(\frac{\mathrm{d} \sigma}{\mathrm{d} Q \mathrm{~d} Y \mathrm{cos} \theta_{C S}}\right)^{-1} \int \mathrm{~d} \phi_{C S} \pi \cos \left(n \phi_{C S}\right) \frac{\mathrm{d} \sigma}{\mathrm{d} Q \mathrm{~d}^{2} \vec{q}_{T} \mathrm{~d} \Omega}\)
- \(\mathcal{S}_{q_{T}}^{(0)}=\frac{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]}{\int \mathrm{d} q_{T}^{2} \mathcal{C}\left[f_{1}^{f} f_{1}^{8}\right]}\) : does not involve \(h_{1}^{\perp g}\) [not always the case]
- \(\mathcal{S}_{q_{T}}^{(2)}=\frac{F_{3} \mathcal{C}\left[w_{2}^{f h} f_{1}^{g} h_{1}^{1 g}+x_{1} \leftrightarrow x_{2}\right]}{2 F_{1} \int \mathrm{~d} q_{T}^{2} \mathcal{C}\left[f_{1}^{f} f_{1}^{g}\right]}\)
- \(\mathcal{S}_{q_{T}}^{(4)}=\frac{F_{4} \mathcal{C}\left[w_{4}^{h h} h_{1}^{\perp g} h_{1}^{1 g}\right]}{2 F_{1} \int \mathrm{~d} q_{T}^{2} C\left[\begin{array}{l}f \\ f\end{array} f_{1}^{g}\right]}\)
\(\mathcal{S}_{q_{T}}^{(2)}, \mathcal{S}_{q_{T}}^{(4)} \neq 0 \Rightarrow\) nonzero gluon polarisation in unpolarised protons!

\section*{Results with UGDs as Ansätze for TMDs}
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

- \(\mathcal{S}_{q T}^{(0)}: f_{1}^{g}\left(x, k_{T}\right)\) from the \(q_{T}\)-dependence of the yield.

\section*{Results with UGDs as Ansätze for TMDs}
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)


\(S_{q_{T}}^{(0)}: f_{1}^{g}\left(x, k_{T}\right)\) from the \(q_{T}\) dependence of the vield.
- \(\mathcal{S}_{q T}^{(4)}: \int d q_{T} \mathcal{S}_{q T}^{(4)}\) should be measurable
[ \(\mathcal{O}(1-2 \%)\) : ok with 2000 events]

\section*{Results with UGDs as Ansätze for TMDs}
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)


\(\mathcal{S}_{q_{T}}^{(0)}: f_{1}^{g}\left(x, k_{T}\right)\) from the \(q_{T}\) dependence of the yield.
- \(\mathcal{S}_{q T}^{(4)}: \int d q_{T} \mathcal{S}_{q T}^{(4)}\) should be measurable
[ \(\mathcal{O}(1-2 \%)\) : ok with 2000 events]
- \(\mathcal{S}_{q T}^{(2)}\) : slightly larger than \(\mathcal{S}_{q T}^{(4)}\)

\section*{Extending to \(J / \psi / \Upsilon+Z\)}
- Rates similar for \(\Upsilon+Z\) and \(J / \psi+Z\) [Same for \(\mathcal{Q}+\gamma\) for \(Q \gtrsim 20 \mathrm{GeV}\) ]
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115


\section*{Extending to \(J / \psi / \Upsilon+Z\)}
- Rates similar for \(\Upsilon+Z\) and \(J / \psi+Z\) [Same for \(\mathcal{Q}+\gamma\) for \(Q \gtrsim 20 \mathrm{GeV}\) ]
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115


\section*{Extending to \(J / \psi / \Upsilon+Z\)}
- Rates similar for \(\Upsilon+Z\) and \(J / \psi+Z\) [Same for \(\mathcal{Q}+\gamma\) for \(Q \gtrsim 20 \mathrm{GeV}\) ]
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

- Potential probe of gluon TMDs as well

\section*{Extending to \(J / \psi / \Upsilon+Z\)}
- Rates similar for \(\Upsilon+Z\) and \(J / \psi+Z\) [Same for \(\mathcal{Q}+\gamma\) for \(Q \gtrsim 20 \mathrm{GeV}\) ]
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

- Potential probe of gluon TMDs as well
- Rate clearly smaller than \(\mathcal{Q}+\gamma\) even at low \(P_{T}\); but much better detectability

\section*{Extending to \(J / \psi / \Upsilon+Z\)}
- Rates similar for \(\Upsilon+Z\) and \(J / \psi+Z\) [Same for \(\mathcal{Q}+\gamma\) for \(Q \gtrsim 20 \mathrm{GeV}\) ]
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

- Potential probe of gluon TMDs as well
- Rate clearly smaller than \(\mathcal{Q}+\gamma\) even at low \(P_{T}\); but much better detectability
- First measurement of \(J / \psi+Z\) by ATLAS; large DPS yield : unequal \(p_{T}\) cuts ?

ATLAS EPJC 75 (2015) 229 ; J.P.L., H.S. Shao JHEP 1610 (2016) 153

\section*{\(\Upsilon+Z \& \Upsilon+\gamma^{\star} @ \sqrt{s}=14 \mathrm{TeV}\)}

\section*{\(\Upsilon+Z \& Y+\gamma^{\star} @ \sqrt{s}=14 \mathrm{TeV}\)}

Q 120 (2017) 192
- \(Q=120 \mathrm{GeV}: Z\) on-shell \(\left[\int \mathcal{S}^{(2)} \sim 0.007 \% ; \int \mathcal{S}^{(4)} \sim 0.001 \%\right.\) ]




\section*{\(\Upsilon+Z \& Y+\gamma^{*} @ \sqrt{s}=14 \mathrm{TeV}\)}
- \(Q=120 \mathrm{GeV}: Z\) on-shell \(\left[\int \mathcal{S}^{(2)} \sim 0.007 \% ; \int \mathcal{S}^{(4)} \stackrel{\substack{\text { JPL, C. Pisano, }}}{\sim 0.001 \%}\right]\)


\(40^{\mathrm{q}_{\mathrm{T}}[\mathrm{GeV}]}\)
- \(Q=20{ }^{10} \mathrm{GeV}{ }^{20}\) dilepton mass [5:7] \(\mathrm{GeV}\left[\int \mathcal{S}^{32} \sim 0.5 \% ; \int \mathcal{S}^{(4)} \sim 0.05 \%\right]^{20}\)


\(\mathrm{S}^{(4)}\left[\mathrm{GeV}^{-2}\right]\)
\[
\mathrm{q}_{\mathrm{T}}[\mathrm{GeV}]
\]


\section*{\(\Upsilon+Z \& \Upsilon+\gamma^{\star} @ \sqrt{s}=14 \mathrm{TeV}\)}
- \(Q=120 \mathrm{GeV}: Z\) on-shell \(\left[\int \mathcal{S}^{(2)} \sim 0.007 \% ; \int \mathcal{S}^{(4)} \underset{\sim}{\sim} \sim 0.001 \%\right.\) ] \(]\)



- \(Q=20 \mathrm{GeV}{ }^{20}\) dilepton mass [5:7] \(\mathrm{GeV}\left[\int \mathcal{S}^{(2)} \sim 0.5 \% ; \int \mathcal{S}^{(4)} \sim 0.05 \%\right]^{20}\)

0.005

\(S^{(4)}\left[\mathrm{GeV}^{-2}\right]\)


( Set B


\section*{\(\Upsilon+\gamma\) already measured ?}

\section*{Search for Higgs and Z Boson Decays to \(J / \psi \gamma\) and \(\Upsilon(n S) \gamma\) with the ATLAS Detector}

\author{
G. Aad et al. \({ }^{*}\) \\ (ATLAS Collaboration)
}
(Received 15 January 2015; published 26 March 2015)
A search for the decays of the Higgs and \(Z\) bosons to \(J / \psi \gamma\) and \(\Upsilon(n S) \gamma(n=1,2,3)\) is performed with \(p p\) collision data samples corresponding to integrated luminosities of up to \(20.3 \mathrm{fb}^{-1}\) collected at \(\sqrt{s}=8 \mathrm{TeV}\) with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and \(95 \%\) C.L. upper limits are placed on the branching fractions. In the \(J / \psi \gamma\) final state the limits are \(1.5 \times 10^{-3}\) and \(2.6 \times 10^{-6}\) for the Higgs and \(Z\) boson decays, respectively, while in the \(\Upsilon(1 S, 2 S, 3 S) \gamma\) final states the limits are \((1.3,1.9,1.3) \times 10^{-3}\) and \((3.4,6.5,5.4) \times 10^{-6}\), respectively.

\author{
( 80 ATLAS
}



\section*{Same at AFTER@LHC}

AFTER@LHC : a fixed-target experiment using the LHC beams
- \(\sqrt{2 \times m_{N} \times E_{p}} \stackrel{7 \mathrm{TeV}}{=} 115 \mathrm{GeV}\)

\section*{Same at AFTER@LHC}

AFTER@LHC : a fixed-target experiment using the LHC beams
- \(\sqrt{2 \times m_{N} \times E_{p}} \stackrel{7 \mathrm{TeV}}{=} 115 \mathrm{GeV}\)
- Experimental coverage of ALICE or LHCb is about \(y_{\mathrm{cms}} \in[-3: 0]\) down to \(x_{F} \rightarrow-1\) for \(Q \gtrsim 5 \mathrm{GeV}\)

\section*{Same at AFTER@LHC}

AFTER@LHC : a fixed-target experiment using the LHC beams
- \(\sqrt{2 \times m_{N} \times E_{p}} \stackrel{7 \mathrm{TeV}}{=} 115 \mathrm{GeV}\)
- Experimental coverage of ALICE or LHCb is about \(y_{\mathrm{cms}} \in[-3: 0]\)
\[
\text { down to } x_{F} \rightarrow-1 \text { for } Q \gtrsim 5 \mathrm{GeV}
\]
- For \(\psi+\gamma\), smaller yield ( \(14 \mathrm{TeV} \rightarrow 115 \mathrm{GeV}\) ) compensated by an access to lower \(P_{T}\)

\section*{Same at AFTER@LHC}

AFTER@LHC : a fixed-target experiment using the LHC beams
- \(\sqrt{2 \times m_{N} \times E_{p}} \stackrel{7 \mathrm{Te} V}{=} 115 \mathrm{GeV}\)
- Experimental coverage of ALICE or LHCb is about \(y_{\mathrm{cms}} \in[-3: 0]\) down to \(x_{F} \rightarrow-1\) for \(Q \gtrsim 5 \mathrm{GeV}\)
- For \(\psi+\gamma\), smaller yield ( \(14 \mathrm{TeV} \rightarrow 115 \mathrm{GeV}\) ) compensated
by an access to lower \(P_{T}\)


\section*{Same at AFTER@LHC}

AFTER@LHC : a fixed-target experiment using the LHC beams
- \(\sqrt{2 \times m_{N} \times E_{p}} \stackrel{7 \mathrm{Te} V}{=} 115 \mathrm{GeV}\)
- Experimental coverage of ALICE or LHCb is about \(y_{\mathrm{cms}} \in[-3: 0]\) down to \(x_{F} \rightarrow-1\) for \(Q \gtrsim 5 \mathrm{GeV}\)
- For \(\psi+\gamma\), smaller yield \((14 \mathrm{TeV} \rightarrow 115 \mathrm{GeV})\) compensated by an access to lower \(P_{T}\)


\section*{\(\underline{\mathcal{S}_{q_{T}}^{(0)}: \text { Model predictions for } \Upsilon+\gamma \text { production at } \sqrt{s}=14 \mathrm{TeV}}\)}
\[
Q=20 \mathrm{GeV}, \quad Y=0, \quad \theta_{C S}=\pi / 2
\]


Models for \(f_{1}^{g}\) : assumed to be the same as for Unintegrated Gluon Distributions
- Set B: BO solution to CCFM equation with input based on HERA data Jung et al., EPJC 70 (2010) 1237
- KMR: Formalism embodies both DGLAP and BFKL evolution equations

Kimber, Martin, Ryskin, PRD 63 (2010) 114027
- CGC: Color Glass Condensate Model

Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003 Metz, Zhou, PRD 84 (2011) 051503
\(\underline{\mathcal{S}_{q_{T}}^{(2,4)}: \text { Model predictions for } \Upsilon+\gamma \text { production at } \sqrt{s}=14 \mathrm{TeV}}\)
\[
Q=20 \mathrm{GeV}, \quad Y=0, \quad \theta_{C S}=\pi / 2
\]


\(h_{1}^{\perp g}\) : predictions only in the CGC: in the other models saturated to its upper bound \(\mathcal{S}_{q_{T}}^{(2,4)}\) smaller than \(\mathcal{S}_{q_{T}}^{(0)}\) : can be integrated up to \(q_{T}=10 \mathrm{GeV}\)
\[
\left.\begin{array}{rl}
2.0 \%(\mathrm{KMR}) & <\left|\int \mathrm{d} q_{T}^{2} \mathcal{S}_{q_{T}}^{(2)}\right|
\end{array}<2.9 \% \text { (Gauss) }\right)
\]

Possible determination of the shape of \(f_{1}^{g}\) and verification of a non-zero \(h_{1}^{\perp g}\)```

