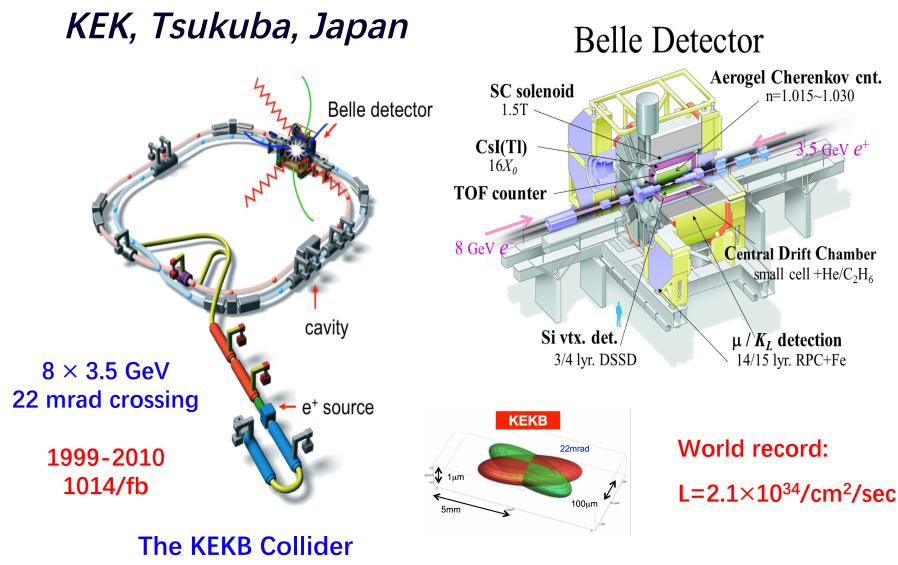
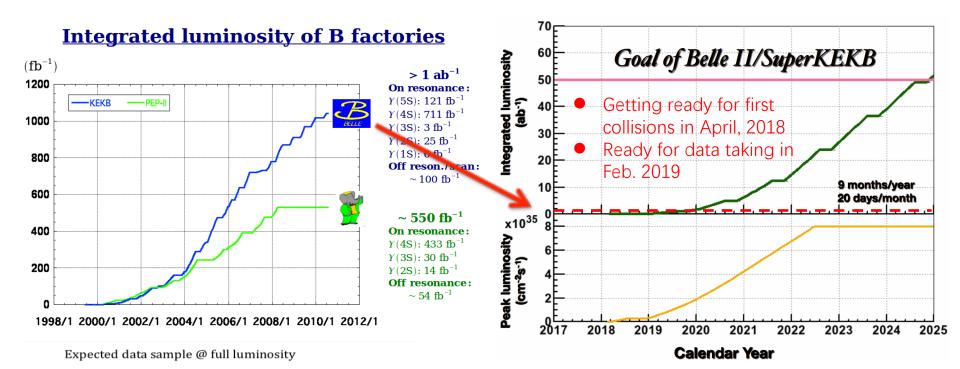


Study of Quarkonium and Quarkonium-like States at Belle


<u>Sen Jía</u> Beihang University (on behalf of the Belle Collaboration)

DIS2018 16-20 April 2018, Kobe, Japan



KEKB and Belle Detector

S. Jia, DIS 2018

Data set at B-factories

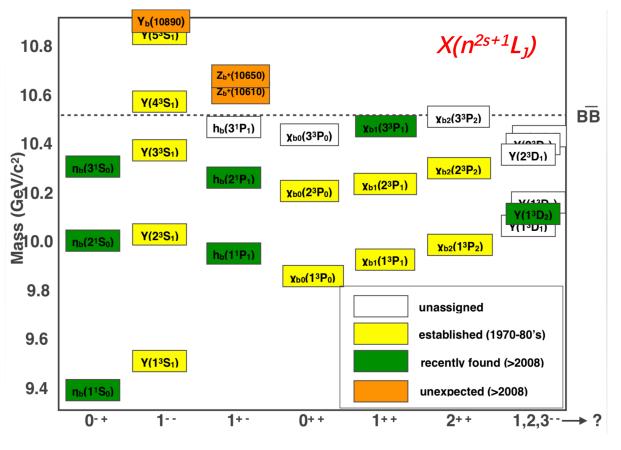
Channel	Belle	BaBar	Belle II (per year)
$B\bar{B}$	7.7×10^{8}	$4.8 imes 10^8$	$1.1 imes10^{10}$
$B^{(*)}_sar{B}^{(*)}_s$	$7.0 imes 10^6$	_	$6.0 imes10^8$
$\Upsilon(1S)$	1.0×10^8		$1.8 imes 10^{11}$
$\Upsilon(2S)$	1.7×10^8	$0.9 imes 10^7$	$7.0 imes10^{10}$
$\Upsilon(3S)$	$1.0 imes 10^7$	$1.0 imes 10^8$	$3.7 imes10^{10}$
$\Upsilon(5S)$	$3.6 imes10^7$	_	$3.0 imes10^9$
au au	1.0×10^{9}	$0.6 imes 10^{9}$	$1.0 imes 10^{10}$

assuming 100% running at each energy

- Bottomonia below $B\overline{B}$ threshold
- Bottomonium-like states above $B\overline{B}$ threshold
- Initial State Radiation
- Two Photon Collisions
- Double Charmonium Production

Content:

Study of Quarkonium at Belle


- Hadronic transitions in bottomonium
- A alternative $\chi_{cJ}(nP)$ candidates in the $D\overline{D}$ system
- Bottomonium inclusive decays

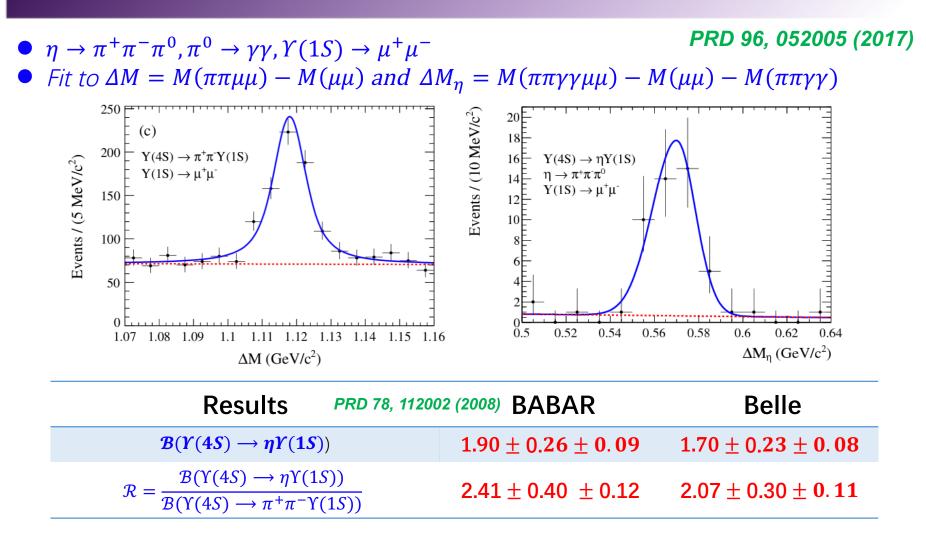
Study of Quarkonium-like states at Belle

- Measurements of $B^+ \to X_{c\bar{c}}K^+$
- Search for Y(4660) and its spin partner in $B^+ \rightarrow K^+ \Lambda_c^+ \bar{\Lambda}_c^-$
- Double Z_c states production

Bottomonium spectroscopy and Hadronic transitions

Bottomonium spectroscopy was gradually developed in the past few decades.
Important information on bottomonium is given by the study of transitions between its states.

Expectations:

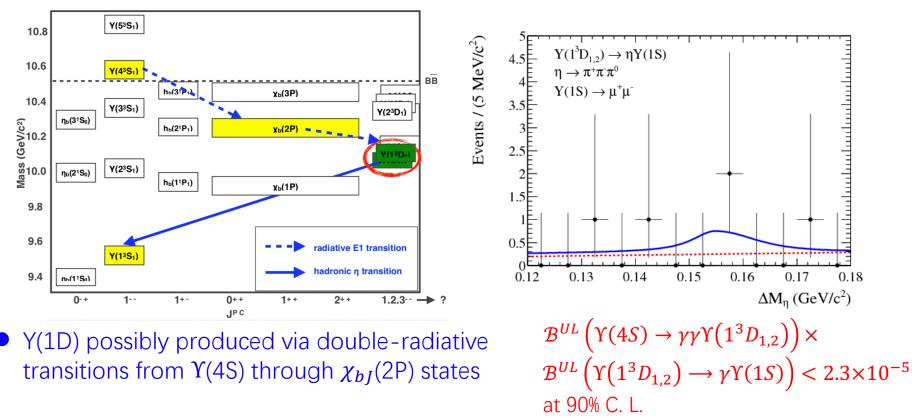

- suppression of spinflipping transitions
 - (i.e. mS $\rightarrow \eta$ nS wrt mS $\rightarrow \pi^+\pi^-$ nS, and mS $\rightarrow \pi^+\pi^-$ nP wrt mS $\rightarrow \pi^+\pi^-$ nS)
- Further suppression of isospin-violating transitions (i.e. mS $\rightarrow \pi^0$ nS wrt others)

Experiment: **PRD 78, 112002 (2008)** $\frac{B(Y(4S) \rightarrow \eta Y(1S))}{B(Y(4S) \rightarrow \pi^{+}\pi^{-}Y(1S))} = 2.41 \pm 0.40_{stat} \pm 0.12_{syst}$

 $\frac{\mathcal{B}(\Upsilon(3S) \rightarrow \pi^0 h_b(1P))}{\mathcal{B}(\Upsilon(3S) \rightarrow \eta \Upsilon(1S))} > 8.6$ **PRD 84, 091101 (2011)**

S. Jia, DIS 2018 Diffuse failure of the theoretical calculations

η and dipion transitions in Y(4S) decays



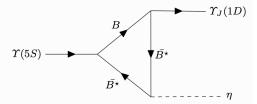
Confirmation of the enhancement with respect to dipion transition

S. Jia, DIS 2018

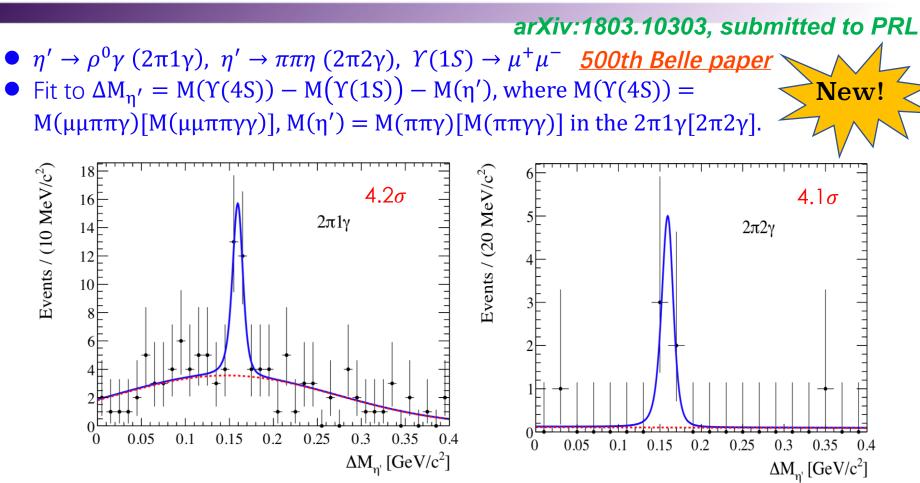
 $\Upsilon(1^3 D_{1.2}) \rightarrow \eta \Upsilon(1S)$

- With the same analysis method and similar event selections.
- Predicted to be enhanced with respect to the transition $\Upsilon(1D) \rightarrow \pi \pi \Upsilon(1S)$ by the axial anomaly in QCD **PLB 562, 68 (2003)**

η transitions from Υ (5S)


arXiv:1803.03225, submitted to EPJC

After combinatorial background subtraction, the missing mass spectrum


 $M_{miss}(\gamma\gamma)$ [GeV/c²]

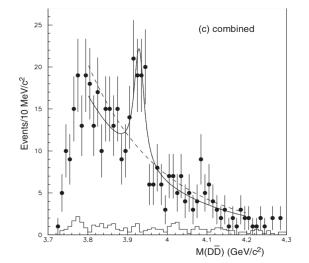
- In particular, $\mathcal{B}(\Upsilon(5S)) \rightarrow \eta \Upsilon(1D))$ in compatible with the prediction (via hadronic loop mechanism) *PRD 94, 094039 (2016)*
- Observation of $\Upsilon(5S) \rightarrow \eta \Upsilon_J(1D)$ $\sigma_v(\Upsilon(5S) \rightarrow \eta \Upsilon_J(1D) = (1.14 \pm 0.22 \pm 0.15) \text{ [pb]}$ $\sigma_B(\Upsilon(5S) \rightarrow \eta \Upsilon_J(1D) = (1.64 \pm 0.31 \pm 0.21) \text{ [pb]}$
- Not resolving the $\Upsilon(1D)$ triplet (resolution~mass splitting) S. Jia, DIS 2018

8

First observation of $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$

• The statistical significance of combined measurement is 5.8 σ

BR	result
$\mathcal{B}(\Upsilon(4S) \to \eta' \Upsilon(1S)) / \mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))$	0.20 ± 0.06
$\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S)) / \mathcal{B}(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S))$	0.42 ± 0.11


Agree with the case of fourquark admixture in transitions

MPLA 26, 773 (2011)

The history of $\chi_{c0}(2P) [\chi_{c2}(2P)]$

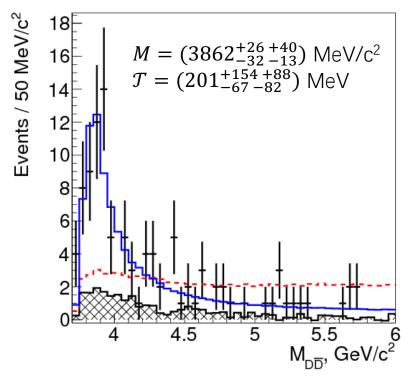
The $\chi_{c0}(2P)[\chi_{c2}(2P)]$ is expected to decay strongly to \overline{DD} in an S-wave. A large width of $\mathcal{T} \ge 100 \text{MeV}$ PRL 94, 182002 (2005)

- The charmoniumlike state X(3915) was observed in $B \rightarrow J/\psi \omega K$ decays
- <u>**But</u>** this process (X(3915) \rightarrow J/ $\psi\omega$) belongs to Okubo-Zweig-lizuka (OZI) suppression process</u>
- \mathcal{T} of X(3915) (~20MeV) seems too small
- X(3915) is no longer identified as the $\chi_{c0}(2P)$ candidate in PDG 2016
- Possible $\chi_{c2}(2P)$ candidates was observed in $\gamma\gamma \rightarrow D\overline{D}$. This charmonium state with M = (3838 ± 12MeV), $\mathcal{T} = (211 \pm 19)MeV$

PRL 96, 082003 (2006)

In Ref.[*PRD 86, 091501(2012)*], the authors show that there is an indication of the $\chi_{c0}(2P)$ with a mass around 3840 MeV and width of about 200 MeV.

S. Jia, DIS 2018

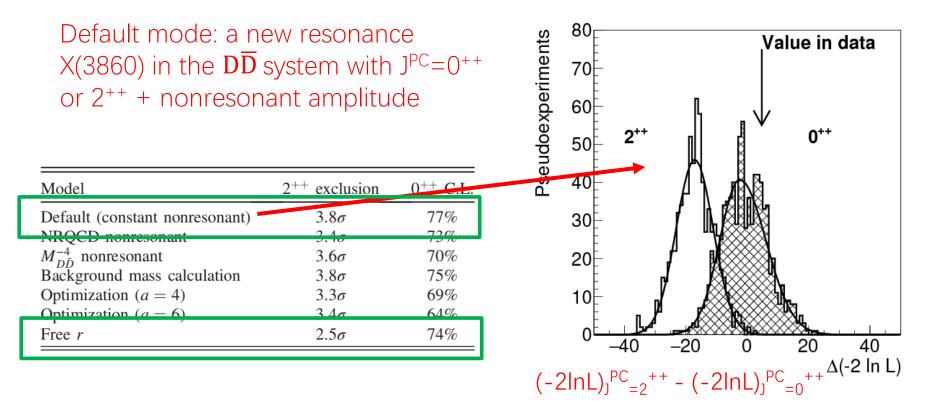

An updated analysis of $e^+e^- \rightarrow J/\psi D\overline{D}$

PRD 95, 112003 (2017)

Compared to previous analysis of $e^+e^- \rightarrow J/\psi D\overline{D}$ [*PRL 100, 202001 (2008)*]:

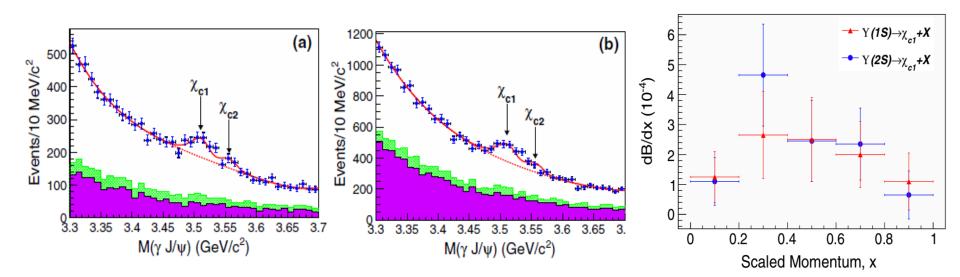
- 1. the integrated luminosity is **1.4 times** greater than before
- 2. apply **multivariate method** improve the discrimination of signal and background
- **3.** amplitude analysis study the J^{PC} quantum numbers of the $D\overline{D}$ system

A alternative $\chi_{c0}(2P)$ candidate


- Points with error bars represent data
- The blue solid line is the fit results with new resonance (J^{PC}=0⁺⁺)
- The red dashed line is the fit with nonresonant amplitude
- The hatched histogram are the background

A two-dimensional $(M_{\mathbf{J}/\psi}, M_D)$ sideband as background

Energy, GeV	$\sigma^{(Born)}_{e^+e^- ightarrow {f J}/\psi X^*(3860)(ightarrow D\overline{D})},$ (fb)
10.58	$21.7^{+3.9}_{-4.3}{}^{+2.9}_{-2.1}$
10.87	$17.9^{+7.2}_{-7.3}{}^{+2.4}_{-1.8}$


Comparison of J^{PC} hypotheses

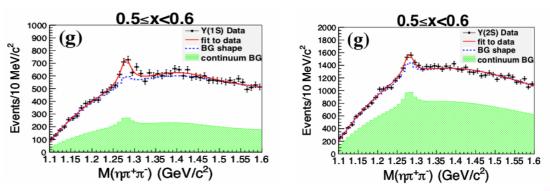
The X(3860) quantum-number hypotheses J^{PC}=0⁺⁺ and 2⁺⁺ are compared using MC simulation.
 PRD 95, 112003 (2017)

$\chi_{c1}(1P)$ in $\Upsilon(1S, 2S)$ inclusive decays

- Original aim: search for 0^{--} glueballs in $\Upsilon(1S,2S) \rightarrow \chi_{c1} + G_{0^{--}}$
- Partition the data samples according to the scaled momentum to correct the $x = \frac{p_{\chi_{c1}}^*}{\frac{1}{2\sqrt{s}} \times (s - m_{\chi_{c1}}^2)}$ efficiency

Mode	BR (×10 ⁻⁴)	Comments	
$\Upsilon(1S) \longrightarrow \chi_{c1}$ anything	$1.90 \pm 0.43 \pm 0.14$	with an improved precision	
$\Upsilon(2S) \longrightarrow \chi_{c1} + anything$	$2.24 \pm 0.44 \pm 0.20$	for the first time	

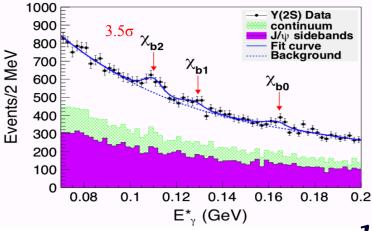
PRD 95, 012001 (2017)


The differential BR

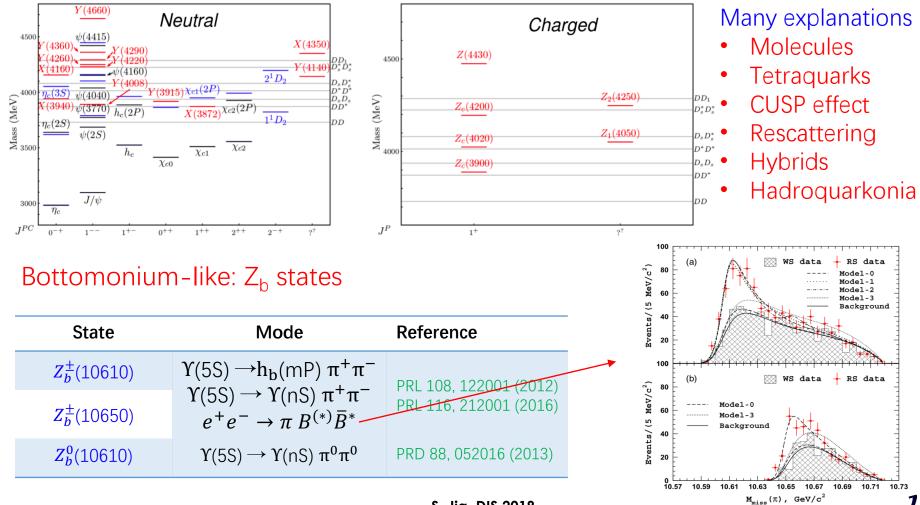
$$\Upsilon(1S, 2S) \rightarrow f_1(1285) + X \text{ and } \chi_{bJ} \rightarrow J/\psi + X$$

• Original aim: search for light tetraquarks in $\Upsilon(1S,2S) \rightarrow f_1(1285) + X_{tetra}$ and $\chi_{bJ} \rightarrow J/\psi + X_{tetra}$

PRD 96, 112002 (2017)


- Clear $f_1(1285)$ signal in $\Upsilon(1S,2S)$ inclusive decays
- Partition the data samples according to the scaled momentum

Mode	BR(×10 ⁻⁴)
$\Upsilon(1S) \longrightarrow f_1(1285) + anything$	$46 \pm 28 \pm 13$
$\Upsilon(2S) \longrightarrow f_1(1285) + anything$	$22 \pm 15 \pm 6.3$


• J/ψ production in χ_{bJ} (J = 0, 1, 2) decays

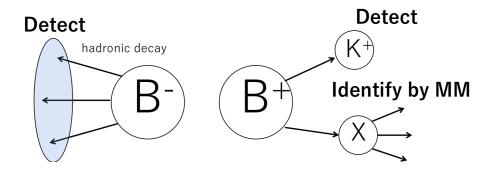
Mode	BR(×10 ⁻³)
$\chi_{b2} \rightarrow J/\psi + anything$	$1.5 \pm 0.34 \pm 0.22$
$\chi_{b1} \rightarrow J/\psi + anything$	1.1 at 90% C.L.
$\chi_{b0} \rightarrow J/\psi + anything$	2.3 at 90% C.L.

Discovery of Charmonium-like and Bottomonium-like states

In the last 10 years we saw an explosion of new states populating the quarkonium spectrum....

S. Jia, DIS 2018

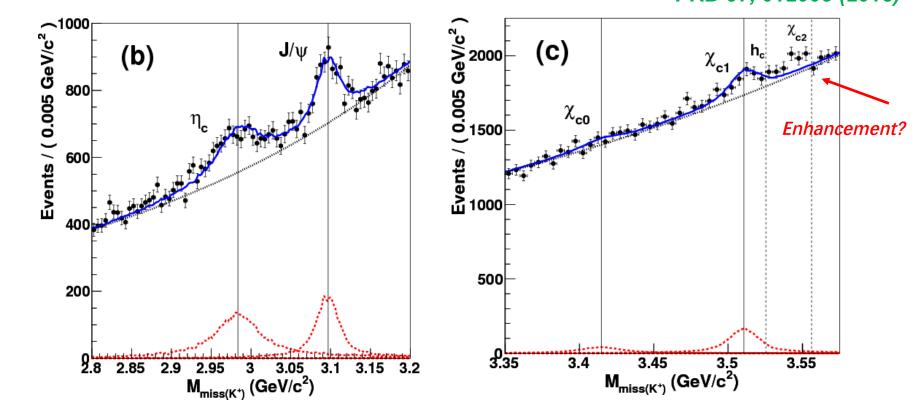
Measurements of $B^+ \rightarrow X_{c\bar{c}}K^+$


PRD 97, 012005 (2018)

- To determine absolute branching fraction $\mathcal{B}(B^+ \to X(3872)K^+)$
- Simultaneously measure the $\mathcal{B}(B^+ \to X_{c\bar{c}}K^+)$, where $X_{c\bar{c}}$ is η_c , J/ψ , χ_{c0} , χ_{c1} , $\eta_c(2S)$, $\psi(2S)$, $\psi(3770)$

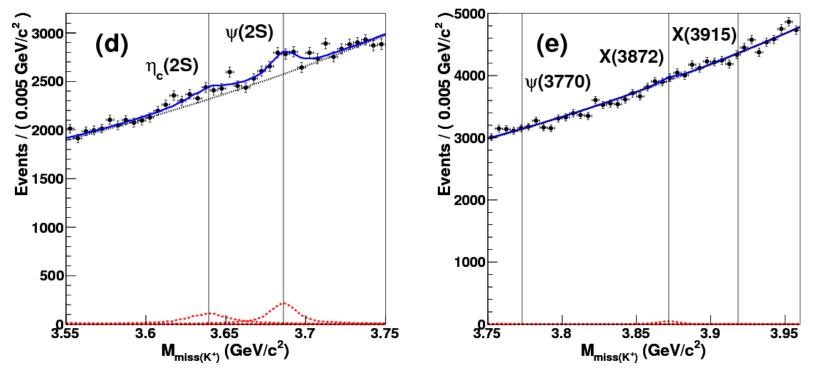
Analysis method:

- Fully reconstruct one of the two charged B mesons (B_{tag})
- NeuroBayes neural-network used to suppress continuum events
- Identify the signal as a peak at the nominal $X_{c\bar{c}}$ mass in


$$M_{\rm miss}(K^+) = \sqrt{(p_{e^+e^-}^* - p_{\rm tag}^* - p_{\rm h}^*)^2/c}$$

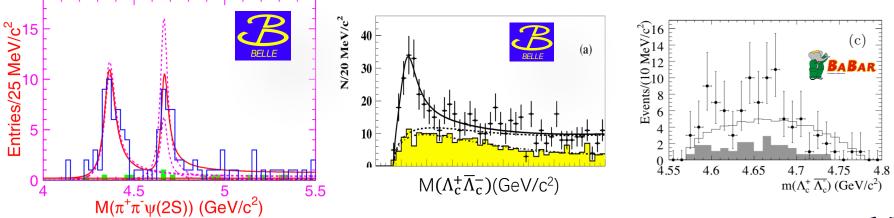
Measurements of $B^+ \rightarrow X_{c\bar{c}}K^+$

PRD 97, 012005 (2018)


7

Mode	Sign ificance (σ)	<i>B</i> (10 ⁻⁴)	PDG results for ${\cal B}$ (10 ⁻⁴)	Comments
η_c	14.2	12.3±0.8±0.7	9.6±1.1	more precise
J/ψ	13.7	9.1±0.7±0.5	10.26±0.031	
X c 0	2.2	2.1±0.9±0.1 (<3.4)	$1.50^{+0.15}_{-0.14}$	-
Xc1	6.8	$6.0 \pm 0.9 \pm 0.5$	4.79±0.23	1

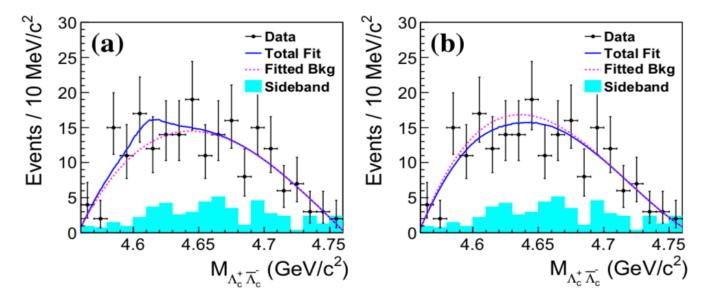
Measurements of $B^+ \to X_{c\overline{c}}K^+$


PRD 97, 012005 (2018)

Mode	Significance (σ)	<i>B</i> (10 ⁻⁴)	PDG results for \mathcal{B} (10 ⁻⁴)	Comments
η_c (2S)	4.1	4.9±1.1±0.3	3.4±1.8	First significant measurement
ψ (2S)	6.6	$6.6 \pm 1.0 \pm 0.4$	6.26±0.24	
$\psi(3770)$	-	-0.2±1.4±0.0 (<2.4)	4.9±1.3	-
X(3872)	1.1	1.2±1.1±0.1 (<2.7)	(<3.2)	From BABAR: ~0.4 σ
X(3915)	0.3	0.4±1.6±0.0 (<2.9)	-	Measurement for the first time 18

Search for Y(4660) and its spin partner in $B^+ \rightarrow K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ EPJC 78, 252 (2018)

- Belle reported a structure, called X(4630), in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution in $e^+e^- \rightarrow \gamma_{ISR} \Lambda_c^+ \overline{\Lambda}_c^-$ *PRL 101, 172001 (2008)*
- Y(4660) is observed in the invariant-mass distribution of $\pi^+\pi^-\psi(2S)$ by Belle. *PRL 99, 142002 (2007)*
- BarBar once studied $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ and found two small peaks in $M_{\Lambda_c^+ \overline{\Lambda_c^-}}$ spectrum. Larger data is needed to verify them. **PRD 101, 172001 (2008)**
- Some theory explained that Y(4660) has a large partial decay width to $\Lambda_c^+ \overline{\Lambda}_c^$ and its isospin partner Y_η is also predicted.


PRD 82, 094008 (2010), PRL 102, 242004 (2009)

Search for Y(4660) and its spin partner in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

- $\Lambda_c^+ \rightarrow p K^- \pi^+, p K_S^0, \Lambda \pi^+, p K_S^0 \pi^+ \pi^-, \Lambda \pi^+ \pi^+ \pi^-$
 - At least a $\Lambda_c^+(\overline{\Lambda}_c^-)$ candidate that decays to $pK^-\pi^+(\overline{p}K^+\pi^-)$ in combination of $\Lambda_c^+\overline{\Lambda}_c^-$
- One B signal candidate with minimun χ^2_{vertex} in an event

Fit with Y_{η} signal included

Fit with Y(4660) signal included

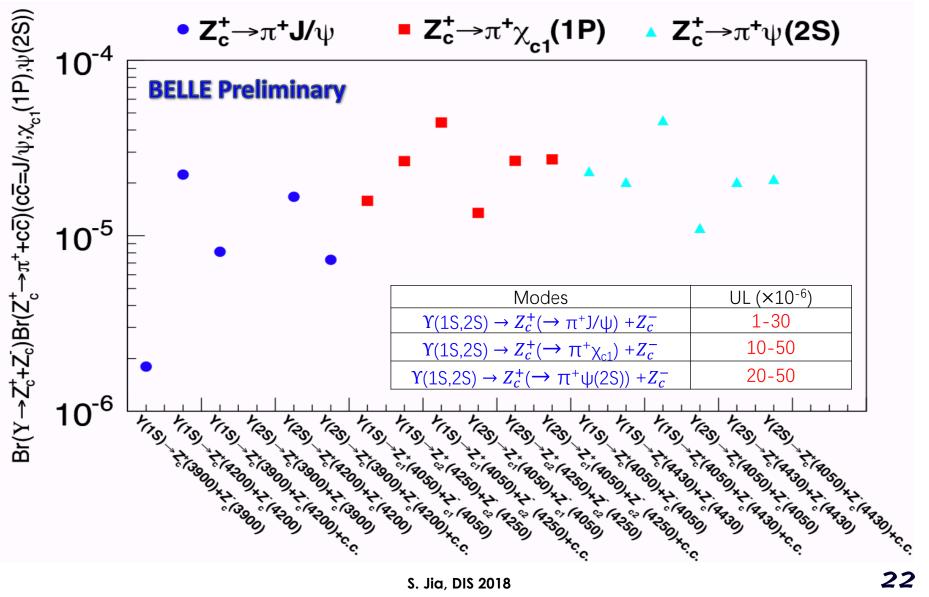
Mode	Upper limits of product <i>BR</i> at 90% C.L.
$B^+ \to K^+ Y(4660) \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$	1.2×10^{-4}
$B^+ \to K^+ Y_\eta \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$	2.0×10 ⁻⁴

EPJC 78, 252 (2018)

Search for
$$\Upsilon(1S,2S) \rightarrow Z_c^+ Z_c^{(\prime)-}$$

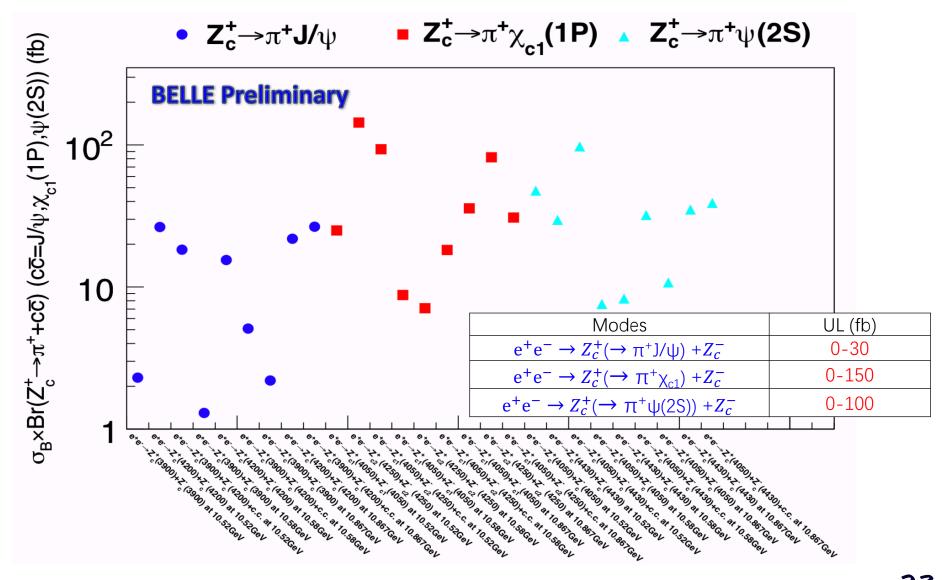
and $e^+e^- \rightarrow Z_c^+ Z_c^{(\prime)-}$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV

 The interpretations for Z_c states are ambiguous, including tetraquarks, molecules, hybrids, or hadrocharmonia, etc.


For $e^+e^- \rightarrow Z_c^+Z_c^-$		PLB 764, 174 (2017)
$F_{Z_c^+ Z_c^-} \sim \frac{1}{s^3}$	tetraquark structure	PRD 91, 114025(2015)
$F_{Z_c^+Z_c^-} \sim \frac{1}{s}$	two tightly bound diquarks	

In this analysis, this below modes are included

States	Studied channels
$Z_c(3900)/Z_c(4200) \rightarrow \pi^+ \mathrm{J}/\psi$	$\Upsilon(1S,2S) / e^+e^- \rightarrow Z_c(3900) + Z_c(3900), Z_c(4200) / Z_c(4200), Z_c(3900) / Z_c(4200)$
$Z_{c1}(4050)/Z_{c2}(4250) \to \pi^+\chi_{c1}$	$\Upsilon(1\text{S},2\text{S}) \ / \text{e}^+ \text{e}^- \rightarrow Z_{c1}(4050) + Z_{c2}(4250), \ Z_{c1}(4250) + Z_{c2}(4250), \ Z_{c1}(4050) + Z_{c2}(4250)$
$Z_c(4050)/Z_c(4430) \to \pi^+ \psi(2S)$	$\Upsilon(1\text{S},2\text{S}) / \text{e}^+ \text{e}^- \rightarrow Z_c(4050) + Z_c(4430), Z_c(4050) + Z_c(4430), Z_c(4050) + Z_c(4430)$


- For the Z_c pair in one event, one Z_c decays into $\pi^+ J/\psi$, $\pi^+ \chi_{c1}$, $\pi^+ \psi(2S)$, the other is the inclusive decays.
- No clear signals are observed and 90% C.L. upper limits are obtained.

 $\Upsilon(1S,2S) \rightarrow Z_c^+ Z_c^{(\prime)-}$

S. Jia, DIS 2018

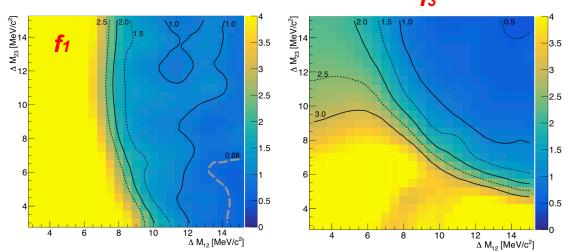
$$e^+e^- \rightarrow Z_c^+ Z_c^{(\prime)-}$$
 at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV

Summary

- Belle data taking is over, but still actively publishing results. Many interesting results are from the studies of Quarkonium and Quarkonium-like States.
- ✓ Confirmation of the enhancement of $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$ with respect to $\Upsilon(4S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$
- ✓ First observation of $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$ and $\Upsilon(5S) \rightarrow \eta \Upsilon_J(1D)$
- ✓ Update the measurement for $\mathcal{B}(B^+ \to X(3872)K^+)$
- ✓ Search for Y(4660) and Y_{η} in $B^+ \to K^+ \Lambda_c^+ \bar{\Lambda}_c^-$
- ✓ Measurement of double Z_c production in e^+e^- reactions
- More promising results are expected at Belle II, where 50 times more statistics than Belle.
- ✓ Investigate bottomonium spectroscopy, understand exotic states, and more...

Investigations on the Y(1D) triplet

arXiv:1803.03225, submitted to EPJC

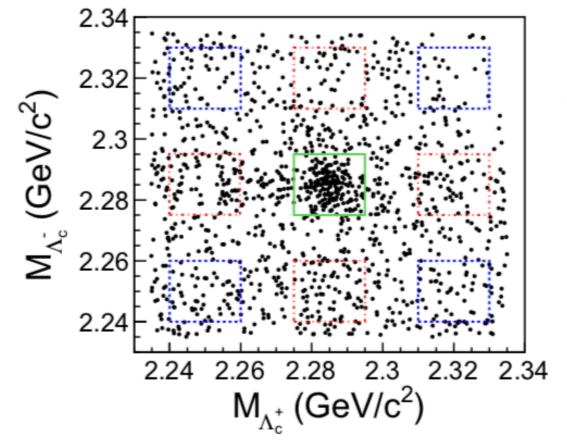

$$\mathcal{F}_{1D} = \frac{N_{1D}}{1 + f_1 + f_2} \cdot [\mathcal{C}_2(m_2) + f_1 \mathcal{C}_1(m_1) + f_3 \mathcal{C}_3(m_3)],$$
(2)

with

$$f_{1} = \frac{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_{1})]}{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D)_{2}]} (= 0.68)_{theory} \quad (3)$$

$$f_{3} = \frac{\Upsilon(5S) \to \eta\Upsilon(1D_{3})}{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_{2})]} (= 0.13)_{theory} \quad (4)$$

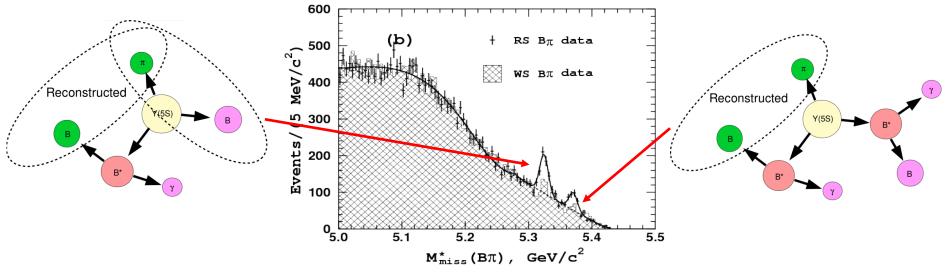
90% CL ULs on *f*₁, *f*₃ as a function of ΔM_{12} and ΔM_{23} *f*₃



Signal in $M_{miss}^2(\gamma\gamma)$: 3 Crystal Ball functions, with free miss relative fractions f_1, f_3 that are precisely predicted in Ref.[**PRD94, 094039(2016)**]

 m_2 fixed to world average, ΔM_{ij} fixed to different values between 3 and 15 MeV/c² (reasonable according to calculations and observations) $\Delta M_{12} = m_2 - m_1$, $\Delta M_{23} = m_3 - m_2$

Sideband determination

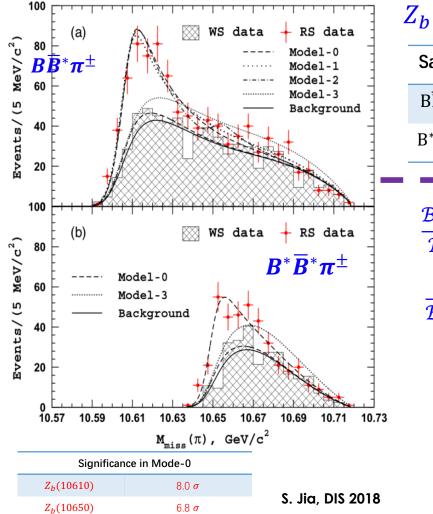


1/2 red sidebands -1/4 blue sidebands

Analysis method for Z_b in $B^{(*)}\overline{B}^*$ systems

PRL 116, 212001 (2016)

- We expect the Z_b states to decay to final states with $B^{(*)}$ mesons at substantial rates.
- Three-body $e^+e^- \rightarrow B^+\overline{B}{}^0\pi^-$, $B^+\overline{B}{}^{*0}\pi^-$, and $B^{*+}\overline{B}{}^{*0}\pi^-$ processes near $\Upsilon(10860)$ peak.
- B mesons are reconstructed in the following decay channel: $B^+ \rightarrow J/\psi K^{(*)+}, B^+ \rightarrow \overline{D}^{(*)0}\pi^+, B^0 \rightarrow J/\psi K^{(*)0}, B^0 \rightarrow D^{(*)-}\pi^+$


RS(right-sign): B^+ or $\overline{B}{}^0$ combined with π^- WS(wrong-sign): combinations with π^+ The statistical significance of the observed $BB^*\pi$ and $B^*B^*\pi$ is 9.3σ and 8.1σ .

S. Jia, DIS 2018

$Z_b(10610)$ and $Z_b(10650)$ in $B\overline{B}^*$ and $B^*\overline{B}^*$ systems

PRL 116, 212001 (2016)

<u>Model-0</u> only $Z_b(10610)[Z_b(10650)]$ amplitude **Model-1** add a nonresonant component **Model-2** add combination of two Z_b amplitudes **Model-3** a pure nonresonant amplitude

Z_b parameters with <u>mode-0</u>

Sample	State	Mass(MeV/c ²)	Width(MeV/c)	
$B\overline{B}^*\pi^\pm$	$Z_b(10610)$	10605 ± 6	25 ± 7	
$B^*\overline{B}{}^*\pi^\pm$	$Z_b(10650)$	10648 ± 13	23 ± 8	
$\frac{\mathcal{B}[Z_b^+(10610) \to \bar{B}^0 B^{*+} + B^+ \bar{B}^{*0}]}{\mathcal{B}[Z_b^+(10610) \to bottomonium]} = 5.93^{+0.99}_{-0.69} ^{+1.01}_{-0.73}$ $\frac{\mathcal{B}[Z_b^+(10650) \to B^{*+} \bar{B}^{*0}]}{\mathcal{B}[Z_b^+(10650) \to bottomonium]} = 2.80^{+0.69}_{-0.40} ^{+0.54}_{-0.36}$				

Channel	Fraction, %	
	$Z_b(10610)$	$Z_b(10650)$
$\Upsilon(1S)\pi^+$	$0.54_{-0.13-0.08}^{+0.16+0.11}$	$0.17\substack{+0.07+0.03\\-0.06-0.02}$
$\Upsilon(2S)\pi^+$	$3.62^{+0.76+0.79}_{-0.59-0.53}$	$1.39\substack{+0.48+0.34\\-0.38-0.23}$
$\Upsilon(3S)\pi^+$	$2.15_{-0.42-0.43}^{+0.55+0.60}$	$1.63^{+0.53+0.39}_{-0.42-0.28}$
$h_b(1P)\pi^+$	$3.45^{+0.87+0.86}_{-0.71-0.63}$	$8.41^{+2.43+1.49}_{-2.12-1.06}$
$h_b(2P)\pi^+$	$4.6 / \frac{+1.24 + 1.18}{-1.00 - 0.89}$	$14.7^{+3.2+2.8}_{-2.8-2.3}$
$B^+ar{B}^{*0}+ar{B}^0B^{*+}$	$85.6^{+1.5+1.5}_{-2.0-2.1}$	
$B^{*+}ar{B}^{*0}$		$73.7^{+3.4+2.7}_{-4.4-3.5}$