

Measurement of $\eta_{C}(1S)$, $\eta_{C}(2S)$ and non-resonant $\eta'\pi\pi$ production in two-photon collisions at Belle

Qingnian Xu

On behalf of the Belle collaboration

DIS 2018 16-20 April 2018,Kobe

1 2018/4/19

Motivation for $\eta_c(1S)$, $\eta_c(2S)$

- Playing an important role in QCD test [1]
 - Precise two-photon decay widths of $\eta_c(1S)$ and $\eta_c(2S)$ give sensitive tests for QCD models [2].
 - As lowest heavy-quarkonium state, $\eta_c(1S)$, as well as J/ψ , $\eta_b(1S)$ and $\Upsilon(1S)$, provide a benchmark for fine tuning of input parameters in QCD calculations.
- Poor knowledge available even for $\eta_c(2S)$ hadronic decays, such as $\eta'\pi\pi$.
- $\eta_c(1S)$ and $\eta_c(2S)$ were measured by BESIII in $\Psi(2S)$ radiative decay, by BELLE and CLEO in B decay and two-photon production.
- First measurement of two-photon decay width of $\eta_c(2S)$ via $K^0_S K^+ \pi^-$ is given and an upper limit for $\eta_c(2S) \to \eta^* \pi^+ \pi^-$ signal is set by CLEO [3].
- × X(1835) is observed by BESII [4] and confirmed by BESIII [5] with $\eta' \pi^+ \pi^-$ final states. And is seen in two-photon collision by Belle [6].
 - [1] N. Brambilla et al., Eur. Phys. C 71, 1534 (2011).
 - [2] J. P. Lansberg and T. N. Pham, Phys. Rev. D 74, 034001 (2006).
 - [3] D.M. Asner, et al., (CLEO Collaboration), Phys. Rev. Lett. 92, 142001 (2004).
 - [4] M. Ablikim, et al., (BESII Collaboration), Phys. Rev. Lett. 95, 262001 (2005).
 - [5] M. Ablikim, et al., (BESIII Collaboration), Phys. Rev. Lett. 106, 072002 (2011).
 - [6] C.C. Zhang et al. Belle Collaboratin, Phys. Rev D86, 052002 (2012).

Motivation for cross section

- Test QCD calculations
 - > Cross sections for two-photon production of pseudo-scalar meson pairs were measured by Belle [1].
 - ► Charged-meson pairs : $\pi^+\pi^-$, K^+K^-
 - Neutral-meson pairs: $K_S^0K_S^0$, $\pi^0\pi^0$, $\eta\pi^0$, $\eta\eta$
 - Leading term QCD [2] predicts $1/(W^6 \sin^4 \theta)$ dependence for charged-meson pair and $1/W^{10}$ and model-dependent angular distribution for neutral-meson pair.
 - Handbag model [3] gives transition amplitude for energy dependence and predicts $1/\sin^4\theta$ dependence both for charged- and neutral-meson pairs.
 - Improved study both in experiment and QCD prediction at higher W mass would provide sensitive test in QCD calculations.
- Cross section measurements for productions of pseudo-scalar tensor pair $\eta' f_2(1270)$ and three-body final state $\eta' \pi \pi$ would provide new data for the QCD test.
 - [1] Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Euro. Phys. Jour. C (2014) 74:3026.
 - [2] M. Benayoun and V. L. Chernyak., Nucl. Phys. B329, 285 (1990).
 - [3] M. Diehl, P. Kroll, and C. Vogt., *Phys. Lett.* B532, 99–110 (2002).

KEKB and Belle Detector

Belle $\gamma\gamma \rightarrow \eta'\pi\pi$ analysis

Data sample:

792 fb⁻¹ at \sqrt{s} =10.58 GeV (Y(4S)) and 60 MeV below it.

149 fb⁻¹ at \sqrt{s} =10.88 GeV (Y(5S)) and scan data around this energy point.

$|\Sigma P^*t|$ and M($\eta'\pi\pi$) distributions

- A $|\Sigma P^*t|$ requirement allows significant \rangle Clear $\eta_c(1S)$ signal in the two decay modes.
 - A heavy combinational background by the low energy photons for $\gamma \rho$ mode.

background reduction.

Background in fit to η'ππ mass spectrum

Background for $M(\eta'\pi\pi)$ spectrum dominant by :

- ✓ Background in η ' signal region(η ' -sdb).
- \checkmark η'ππ+any (b_any).
- ✓ Non resonance (NR): $e+e-\rightarrow e+e-\eta'\pi^+\pi^-$.

- ✓ Low smooth background.
- \checkmark η '-sdb determined by events in the η ' sideband region
- ✓ b_any described by events in region of $0.17 < |\Sigma P^*_t| < 0.2 \text{GeV}$.

- ✓ Heavy background (including a peaking component due to η' mass constraint fit.).
- ✓ η '-sdb + b_any determined by events in a region 0.15< $|\Sigma P^*_t|$ <0.2GeV.
- \checkmark NR described by a 3rd exponential polynomial in fit for γρ and ηππ.

Simultaneous Fit for $\eta_c(1s)$ and $\eta_c(2s)$

Discussion on Γ_{yy} of $\eta_c(2S)$

• Defining the ratio $R = \frac{\Gamma_{\gamma\gamma}(\eta_c(2S))B(\eta_c(2S))}{\Gamma_{\gamma\gamma}(\eta_c(1S))B(\eta_c(1S))}$, which is directly measured,

	Belle $(\eta'\pi\pi)$	BaBar $(K\overline{K}\pi)$ [1]	CLEO $(K_s K \pi)[2]$
R	$(8.6 \pm 2.6) \cdot 10^{-2}$	$(10.6 \pm 2.0) \cdot 10^{-2}$	$(18 \pm 5 \pm 2) \cdot 10^{-2}$

Consistent

so, we have
$$R_B = \frac{B(\eta_c(2S) \to \eta' \pi \pi)}{B(\eta_c(1S) \to \eta' \pi \pi)} \cong \frac{B(\eta_c(2S) \to K\overline{K}\pi)}{B(\eta_c(1S) \to K\overline{K}\pi)}$$
 within error.

♦ Assuming R_B ≅ 1 and using the world average value $\Gamma_{\gamma\gamma}(\eta_c(1S)) = 5.1 \pm 0.4 \text{ keV}$, we obtain $\Gamma_{\gamma\gamma}(\eta_c(2S)) = 0.44 \pm 0.13 \text{ keV}$ for Belle $(\eta'\pi\pi)$ and $0.54 \pm 0.11 \text{ keV}$ for BaBar $(K\overline{K}\pi)$ [1]. Both $\Gamma_{\gamma\gamma}(\eta_c(2S))$ values by Belle are lower than $0.92 \pm 0.28 \text{ keV}$ for CLEO $(K_sK\pi)$ [2].

Discrepancy between data and QCD values

- QCD predictions for two-photon decay width of $\eta_c(2S)$ are ranged from 1.4 to 5.7 [3,4].
- It is essential to have **precise measurement** of either $B(\eta_c(2S) \to K_s K\pi)$ or $B(B \to K\eta_c(2S))$
 - [1]_del Amo Sanchez. P. et al. (BaBar Collaboration) Phys.Rev. D84 (2011) 012004.
 - [2] D. M. Asner et al. CLEO Collaboration, Phys. Rev.Lett. 92 (2004) 142001.
 - [3] T. Barnes, T. E. Browder, and S. F. Tuan, Phys. Lett. B 385, 391 (1996).
 - [4] J.P. Lansberg, T.N. Pham, AIP Conf. Proc. 1038 (2008) 259.

Study of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+ \pi^-$

Black dots and red circles for events selected in $\eta_c(1S)$ signal and sideband regions.

2018/4/19

Fitting $f_0(2080) \rightarrow \pi^+\pi^-$ with sample in $\eta_c(1S)$ signal region

Blatt-Weisskopf Breit-Wigner function for the signal:

$$f_s(m) = n_s(f_{BW}(m; M, \Gamma)p(m)\epsilon(m) \int_{m_d}^{m_u} q(m, m_{\eta_c}) f_{BW}(m_{\eta_c}) \frac{dL_{\gamma^*\gamma^*}}{dm_{\eta_c}} dm_{\eta_c}) \otimes g_{res}(m)$$

- \checkmark $\epsilon(m)$: detection efficiency.
- ✓ p(m): π momentum in f₀(2080) rest frame.
- \checkmark q(m,m_{nc}) : f₀(2080) momentum in γ γ rest frame.
- $\checkmark \frac{dL_{\gamma\gamma}}{d_{m\eta_c}}$: two-photon luminosity function.
- \checkmark $g_{res}(m)$: resolution of mass m.
- $\checkmark (m_d, m_u) = (2.9, 3.06) \text{GeV if m} < 2.9 0.958 (\eta' \text{ mass})$ $(m_d, m_u) = (m+0.958, 3.06) \text{GeV if m} > 2.9 - 0.958$

Cross section for $\gamma\gamma \rightarrow \eta'\pi\pi$, $\eta'f_2(1270)$

The differential cross section in a W and $|\cos\theta^*|$ two-dimensional bin is estimated by :

$$\frac{d\sigma_{\gamma\gamma\to\eta'\pi^{+}\pi^{-}}(W_{\gamma\gamma},cos\theta^{*})}{d|cos\theta^{*}|} = \frac{\Delta N(W_{\gamma\gamma},cos\theta^{*})/\epsilon(W_{\gamma\gamma},cos\theta^{*})}{L_{int}\cdot\frac{dL_{\gamma\gamma}(W_{\gamma\gamma})}{dW_{\gamma\gamma}}\cdot\Delta W_{\gamma\gamma}\cdot\Delta|cos\theta^{*}|}$$
(1)

The W-dependent cross section of $\gamma\gamma \rightarrow \eta^{\prime}\pi^{+}\pi^{-}$ obtained by a summation over $\Delta |\cos\theta^{*}|$ bins:

$$\sigma_{\gamma\gamma\to\eta'\pi^+\pi^-}(W_{\gamma\gamma}) = \sum_{\Delta_i|\cos\theta^*|} \frac{d\sigma_{\gamma\gamma\to\eta'\pi^+\pi^-}(W_{\gamma\gamma},\cos\theta^*)}{d|\cos\theta^*|} \Delta_i|\cos\theta^*|$$
(2)

The differential cross section in $|\cos \theta^*|$ averaged over W bins within a certain W region:

$$\sigma_{\gamma\gamma\to\eta'\pi^{+}\pi^{-}}(\cos\theta^{*}) = \frac{\sum \left(\frac{d\sigma_{\gamma\gamma\to\eta'\pi^{+}\pi^{-}}(W_{\gamma\gamma},\cos\theta^{*})}{d|\cos\theta^{*}|}\Delta W_{\gamma\gamma}\right)}{\sum \Delta W_{\gamma\gamma}}$$
(3)

$\sigma(\gamma\gamma \rightarrow \eta'\pi\pi)$: fitting $|\Sigma P^*t|$

Two-photon signal yield is extracted by fitting $|\Sigma P^*t|$ distribution in data for each 2-dimension bin.

signal shape in MC is fixed, η '-sdb in data is normalized and fixed, and b_any is described by a 3rd order polynomial.

Events / (0.01

$\sigma(\gamma\gamma \rightarrow \eta' f_2(1270))$: fitting M($\pi\pi$)

 $f_2(1270)$ yield is extracted from fitting $M(\pi^+\pi^-)$ distribution in data for each 2-dimensional bin.

- \triangleright Signal shape is described by a Breit-Wigner with Γ and M fixed.
- \triangleright Normalized η '-sdb in data is fixed.
- ➤ b_any is described by a 4th order exponential polynomial.

Result of $\sigma(\gamma\gamma \rightarrow \eta' f_2(1270))$

Solid points are the measured cross section in data

- Green dashed is the leading term QCD predictions for neutral meson pairs $\sim 1/W^{10}$ [1].
- No prediction for $\gamma\gamma \rightarrow \eta' f_2(1270)$.
- Assuming $\sigma \sim 1/w^n$.
- We get the fitted value of $n = 5.1 \pm 1.0$ for $|\cos\theta^*| < 1$ and $n = 7.5 \pm 2.0$ for $|\cos\theta^*| < 0.6$.

Result of $\sigma(\gamma\gamma \rightarrow \eta'\pi\pi)$

- (a). Structure near 1.8 GeV/ c^2 is contributed from X(1835) or $\eta(1760)$ [1].
- (b) Enhancement at 2.1GeV/c^2 is possible contribution from $\gamma\gamma \rightarrow I(2100) \rightarrow \eta' f_0(980)$.

[1]C.C. Zhang et al. Belle Collaboratin, Phys. Rev D86, 052002 (2012).

Cross Section in $|\cos \theta^*|$

Black dots with error bar are the $|\cos\theta^*|$ dependent cross sections in data

$$\gamma\gamma \rightarrow \eta' f_2(1270)$$

Red line is QCD predictions for neutral meson pairs $\sim 1/\sin^4\theta$

Measured cross section after subtracting the $\gamma\gamma \rightarrow \eta' f_2(1270)$ contribution in W region above 2.26GeV. The distributions in data comparable with a uniform distribution (red lines).

Summary

- Results on the $\gamma\gamma \rightarrow \eta'\pi\pi$ process for both $\eta' \rightarrow \eta\pi\pi$ & $\gamma\rho$ decays using 941 fb⁻¹ Belle data are presented.
- First observation of $\eta_C(2S) \rightarrow \eta^2 \pi \pi$ with a significance **5.5σ** including systematic error.
 - Consistent ratio $R = \frac{\Gamma_{\gamma\gamma}(\eta_c(2S))B(\eta_c(2S))}{\Gamma_{\gamma\gamma}(\eta_c(1S))B(\eta_c(1S))}$ between $K\overline{K}\pi$ (BaBar) and $\eta'\pi\pi$ (Belle) decays, is interesting in QCD test.
- First observation of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+\pi^-$ with a significance 20σ , and its mass and width is determined to be

M =
$$2083^{+63}_{-66} \pm 32 \text{ MeV/c}^2$$
,
 $\Gamma = 178^{+60}_{-178} \pm 55 \text{ MeV}$.

Measurements of pseudo-scalar tensor pair \eta' f_2(1270) production, as well as that of $\eta' \pi \pi$, are made for the **first time**.

Thanks for your attention!

Backup

Selection criteria

γρ mode

Variable	cut value
P_{sum}	$< 5.5 \; \mathrm{GeV}/c$
E_{sum}	$< 4.5 \mathrm{GeV}$
N_{π^+}, N_{π^-}	2,2
N_{charge}	4
$N_{k^+} + N_{k^-}$	< 1
$N_{p^+} + N_{p^-}$	< 1
$N_{e^+} + N_{e^-}$	< 1
k_s -veto	$\notin (0.508, 0.488)[\text{GeV}/c^2]$
$M(\eta')$	$(0.942, 0.974)[\text{GeV}/c^2]$
π^0, η -veto	$\notin (0.115, 0.155), (0.524, 0.572)[\text{GeV}/c^2]$
E_{γ}	$> 100 { m MeV}$
Σp_t	$< 0.1 { m GeV}/c$

$\eta\pi\pi$ mode

Variable	cut value
P_{sum}	$< 5.5 { m GeV}/c$
E_{sum}	$< 4.5 { m GeV}$
N_{π^+}, N_{π^-}	2,2
N_{charge}	4
$N_{k^+} + N_{k^-}$	< 1
$N_{p^+} + N_{p^-}$	< 1
$N_{e^+} + N_{e^-}$	< 1
$k_s - veto$	$\notin (0.488, 0.508)[\text{GeV}/c^2]$
$E(\gamma)$	$> 100 { m MeV}$
$M(\eta)$	$(0.524, 0.572)[\text{GeV}/c^2]$
$M(\eta')$	$(0.951, 0.963)[\text{GeV}/c^2]$
$\pi^0 - veto$	$\notin (0.115, 0.155)[\text{GeV}/c^2]$
$\sum p_t$	$< 0.15 \mathrm{GeV}/c$

 $|\Sigma P^*t|$ is optimized with the best $s/\sqrt{s+b}$ in $\eta_c(1s)$ and $\eta_c(2s)$ signal region.

From PDG 2017

	Branching fraction
$\eta_c(1S) \rightarrow K\overline{K}\pi$	$(7.3 \pm 0.5)\%$
$\eta_c(2S) \rightarrow K\overline{K}\pi$	$(1.9 \pm 1.2)\%$
$B \rightarrow K(\eta_c(1S) \rightarrow K_s K\pi)$	$(2.7 \pm 0.6) \times 10^{-5}$
$B \rightarrow K(\eta_c(2S) \rightarrow K_S K \pi)$	$(3.4^{+2.3}_{-16}) \times 10^{-6}$

χ^2 scan for $f_0(2080)$ mass and width

From the chi2 scan we get:

M = 2088 + 60 - 54 MeV/c2

W = 177 + 62 - 177 MeV

Which are comparable with the results from MINOS fit.

From MINOS fit:

M = 2083 + 63 - 67 MeV/c2

W = 178 + 60 - 178 MeV

Possible intermediate from $\gamma\gamma \rightarrow I(2100) \rightarrow \eta' f_0(980)$

- In $f_0(980)$ signal region $0.86 < M(\pi\pi) < 1.10 \text{ GeV/c}^{2}$
 - I(2100) with statistic significance 3.5σ .