Measurement of $\boldsymbol{\eta}_{\mathbf{c}}(1 \mathbf{S}), \boldsymbol{\eta}_{\mathrm{c}}(\mathbf{2 S})$ and nonresonant η 'rir production in two-photon collisions at Belle

Motivation for $\eta_{c}(1 S), \eta_{c}(2 S)$

- Playing an important role in QCD test [1]
$\checkmark \quad$ Precise two-photon decay widths of $\eta_{c}(1 S)$ and $\eta_{c}(2 S)$ give sensitive tests for QCD models [2].
\checkmark As lowest heavy-quarkonium state, $\eta_{c}(1 S)$, as well as $J / \psi, \eta_{b}(1 S)$ and $\Upsilon(1 S)$, provide a benchmark for fine tuning of input parameters in QCD calculations.
- Poor knowledge available even for $\eta_{c}(2 S)$ hadronic decays, such as $\eta \prime \pi \pi$.
- $\eta_{c}(1 S)$ and $\eta_{c}(2 S)$ were measured by BESIII in $\Psi(2 S)$ radiative decay, by BELLE and CLEO in B decay and twophoton production.
- First measurement of two-photon decay width of $\eta_{\mathrm{c}}(2 S)$ via $\mathrm{K}_{\mathrm{S}} \mathrm{K}^{+} \pi^{-}$is given and an upper limit for $\eta_{\mathrm{c}}(2 \mathrm{~S}) \rightarrow \eta^{\prime} \pi^{+} \pi^{-}$ signal is set by CLEO [3].
- $\mathrm{X}(1835)$ is observed by BESII [4] and confirmed by BESIII [5] with $\eta^{\prime} \pi^{+} \pi^{-}$final states. And is seen in two-photon collision by Belle [6].
[1] N. Brambilla et al., Eur. Phys. C 71, 1534 (2011).
[2] J. P. Lansberg and T. N. Pham, Phys. Rev. D 74, 034001 (2006).
[3] D.M. Asner, et al.,(CLEO Collaboration), Phys. Rev. Lett. 92, 142001 (2004).
[4] M. Ablikim, et al., (BESII Collaboration), Phys. Rev. Lett. 95, 262001 (2005).
[5] M. Ablikim, et al., (BESIII Collaboration), Phys. Rev. Lett. 106, 072002 (2011).
[6] C.C. Zhang et al. Belle Collaboratin,Phys. Rev D86, 052002 (2012).

Motivation for cross section

- Test QCD calculations
> Cross sections for two-photon production of pseudo-scalar meson pairs were measured by Belle [1].
> Charged-meson pairs : $\pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$
> Neutral-meson pairs: $\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{S}}{ }_{\mathrm{S}}, \pi^{0} \pi^{0}, \eta \pi^{0}, \eta \eta$
> Leading term QCD [2] predicts $1 /\left(W^{6} \sin ^{4} \theta\right)$ dependence for charged-meson pair and $1 / W^{10}$ and model-dependent angular distribution for neutral-meson pair.
$>$ Handbag model [3] gives transition amplitude for energy dependence and predicts $1 / \sin ^{4} \theta$ dependence both for charged- and neutral-meson pairs.
> Improved study both in experiment and QCD prediction at higher W mass would provide sensitive test in QCD calculations.
- Cross section measurements for productions of pseudo-scalar tensor pair $\eta^{\prime} f_{2}(1270)$ and three-body final state η ' $\pi \pi$ would provide new data for the QCD test.

[^0]
KEKB and Belle Detector

Tsukuba, Japan
$3.5 \mathrm{GeV} \mathrm{e}^{+}$on $8 \mathrm{GeV} \mathrm{e}^{-}$ $\mathrm{W}_{\mathrm{CM}}=\mathrm{M}(\Upsilon(4 \mathrm{~S}, 5 \mathrm{~S}))$ 3km circumference
~ 11 mrad crossing angle

Belle $\gamma \gamma \rightarrow \eta$ ' $\pi \pi$ analysis

Data sample:
$792 \mathrm{fb}^{-1}$ at $\sqrt{s}=10.58 \mathrm{GeV}(\Upsilon(4 \mathrm{~S}))$ and 60 MeV below it.
$149 \mathrm{fb}^{-1}$ at $\sqrt{S}=10.88 \mathrm{GeV}(\Upsilon(5 \mathrm{~S}))$ and scan data around this energy point.

$\left|\Sigma \mathbf{P}^{*} \mathbf{t}\right|$ and $\mathrm{M}(\eta ’ \pi \pi)$ distributions

$\eta \pi \pi$ mode

$\gamma \rho$ mode

in $\boldsymbol{\eta}_{\mathbf{c}}(\mathbf{1} \mathbf{s})$ signal region

in $\boldsymbol{\eta}_{\mathbf{c}}(\mathbf{2 s})$ signal region
$>$ Untagged two-photon process tend to carry small transverse momentum.
$>\mathrm{A}|\Sigma \mathrm{P} * \mathrm{t}|$ requirement allows significant background reduction.

$>$ Clear $\eta_{\mathrm{c}}(1 \mathrm{~S})$ signal in the two decay modes.
$>$ A heavy combinational background by the low energy photons for $\gamma \rho$ mode .

Background in fit to $\eta^{\prime} \pi \pi$ mass spectrum

\checkmark Low smooth background.
$\checkmark \quad \eta$ 'sdb determined by events in the η ' sideband region
\checkmark b_any described by events in region of $0.17<\left|\Sigma \mathrm{P}^{*}\right|<0.2 \mathrm{GeV}$.
\checkmark Heavy background (including a peaking component due to η ' mass constraint fit.).
$\checkmark \quad \eta^{\prime}$-sdb +b _any determined by events in a region $0.15<\left|\Sigma \mathrm{P}^{*}\right|<0.2 \mathrm{GeV}$.
\checkmark NR described by a $3^{\text {rd }}$ exponential polynomial in fit for $\gamma \rho$ and $\eta \pi \pi$.

Simultaneous Fit for $\eta_{c}(1 s)$ and $\eta_{c}(2 s)$

	$\eta_{c}(1 S)$		$\eta_{c}(2 S)$	
	$\gamma \rho$	$\eta \pi^{+} \pi^{-}$	$\gamma \rho$	
n_{s}	1728_{-68}^{+69}	945_{-37}^{+38}	$65_{-13}^{+14} \pi^{-}$	
$M\left(\mathrm{MeV} / c^{2}\right)$	$2984.6 \pm 0.7 \pm 2.2$	$3635.1 \pm 3.7 \pm 2.9$		
$\Gamma(\mathrm{MeV})$	$30.8_{-2.2}^{+2.3} \pm 2.5$	$11.3[$ fixed $]$		
$\Gamma_{\gamma \gamma} \mathcal{B}(\mathrm{eV})$	$65.4 \pm 2.6 \pm 6.9$	$5.6_{-1.1}^{+1.2} \pm 1.1$		

Discussion on $\Gamma_{\gamma Y}$ of $\eta_{c}(2 S)$

- Defining the ratio $\mathrm{R}=\frac{\Gamma_{\gamma \gamma}\left(\eta_{c}(2 S)\right) B\left(\eta_{c}(2 S)\right)}{\Gamma_{\gamma \gamma}\left(\eta_{c}(1 S)\right) B\left(\eta_{c}(1 S)\right)}$, which is directly measured,

	Belle $\left(\eta^{\prime} \pi \pi\right)$	$\operatorname{BaBar}(K \bar{K} \pi)[1]$	CLEO $\left(K_{S} K \pi\right)[2]$
R	$(8.6 \pm 2.6) \cdot 10^{-2}$	$(10.6 \pm 2.0) \cdot 10^{-2}$	$(18 \pm 5 \pm 2) \cdot 10^{-2}$

so, we have $\mathrm{R}_{\mathrm{B}}=\frac{B\left(\eta_{c}(2 S) \rightarrow \eta^{\prime} \pi \pi\right)}{B\left(\eta_{c}(1 S) \rightarrow \eta^{\prime} \pi \pi\right)} \cong \frac{B\left(\eta_{c}(2 S) \rightarrow K \bar{K} \pi\right)}{B\left(\eta_{c}(1 S) \rightarrow K \bar{K} \pi\right)}$ within error.
\rightarrow Assuming $\mathrm{R}_{\mathrm{B}} \cong 1$ and using the world average value $\Gamma_{\gamma \gamma}\left(\eta_{c}(1 \mathrm{~S})\right)=5.1 \pm 0.4 \mathrm{keV}$, we obtain $\Gamma_{\gamma \gamma}\left(\eta_{\mathrm{C}}(2 \mathrm{~S})\right)=0.44 \pm 0.13 \mathrm{keV}$ for Belle $\left(\eta^{\prime} \pi \pi\right)$ and $0.54 \pm 0.11 \mathrm{keV}$ for $\operatorname{BaBar}(K \bar{K} \pi)$ [1].
Both $\Gamma_{\gamma \gamma}\left(\eta_{C}(2 S)\right)$ values by Belle are lower than

$$
0.92 \pm 0.28 \mathrm{keV} \text { for } \operatorname{CLEO}\left(K_{S} K \pi\right)[2]
$$

Discrepancy between data and QCD values
\bullet QCD predictions for two-photon decay width of $\eta_{c}(2 S)$ are ranged from 1.4 to 5.7 [3,4].

- It is essential to have precise measurement of either $B\left(\eta_{c}(2 S) \rightarrow K_{S} K \pi\right)$ or $B\left(\mathrm{~B} \rightarrow K \eta_{c}(2 S)\right)$
[1] del Amo Sanchez. P. et al. (BaBar Collaboration) Phys.Rev. D84 (2011) 012004.
[2] D. M. Asner et al. CLEO Collaboration, Phys. Rev.Lett. 92 (2004) 142001.
[3] T. Barnes, T. E. Browder, and S. F. Tuan, Phys. Lett. B 385, 391 (1996).
[4] J.P. Lansberg, T.N. Pham, AIP Conf. Proc. 1038 (2008) 259.

Study of $\eta_{c}(1 S) \rightarrow \eta^{\prime} f_{0}(2080)$ decay with $f_{0}(2080) \rightarrow \pi^{+} \pi^{-}$

Black dots and red circles for events selected in $\eta_{c}(1 S)$ signal and sideband regions.

Fitting $f_{0}(2080) \rightarrow \pi^{+} \pi^{-}$with sample in $\eta_{c}(1 S)$ signal region

Blatt-Weisskopf Breit-Wigner function for the signal:

$$
f_{s}(m)=n_{s}\left(f_{B W}(m ; M, \Gamma) p(m) \epsilon(m) \int_{m_{d}}^{m_{u}} q\left(m, m_{\eta_{c}}\right) f_{B W}\left(m_{\eta_{c}}\right) \frac{d L_{\gamma^{*} \gamma^{*}}}{d m_{\eta_{c}}} d m_{\eta_{c}}\right) \otimes g_{r e s}(m)
$$

$\checkmark \quad \varepsilon(\mathrm{m}):$ detection efficiency.
$\checkmark \quad \mathrm{p}(\mathrm{m}): \pi$ momentum in $\mathrm{f}_{0}(2080)$ rest frame.
$\checkmark \quad \mathrm{q}\left(\mathrm{m}, \mathrm{m}_{\mathrm{\eta c}}\right): \mathrm{f}_{0}(2080)$ momentum in $\gamma \gamma$ rest frame.
$\checkmark \frac{d L_{\gamma \gamma}}{d_{m_{\eta_{c}}}}$: two-photon luminosity function.
$\checkmark \quad g_{\text {res }}(m)$: resolution of mass m.
$\checkmark \quad\left(\mathrm{m}_{\mathrm{d}}, \mathrm{m}_{\mathrm{u}}\right)=(2.9,3.06) \mathrm{GeV}$ if $\mathrm{m}<2.9-0.958$ (n^{\prime} mass)
$\left(\mathrm{m}_{\mathrm{d}}, \mathrm{m}_{\mathrm{u}}\right)=(\mathrm{m}+0.958,3.06) \mathrm{GeV}$ if $\mathrm{m}>2.9-0.958$

$$
M=2083_{-66}^{+63} \pm 32 \mathrm{MeV}, \Gamma=178_{-178}^{+60} \pm 55 \mathrm{MeV}
$$

Cross section for $\gamma \gamma \rightarrow \eta^{\prime} \pi \pi, \eta^{\prime} f_{2}(1270)$

$>$ The differential cross section in a W and $\left|\cos \theta^{*}\right|$ two-dimensional bin is estimated by :

$$
\begin{equation*}
\frac{d \sigma_{\gamma \gamma \rightarrow \eta^{\prime} \pi^{+} \pi^{-}}\left(W_{\gamma \gamma}, \cos \theta^{*}\right)}{d\left|\cos \theta^{*}\right|}=\frac{\Delta N\left(W_{\gamma \gamma}, \cos \theta^{*}\right) / \epsilon\left(W_{\gamma \gamma}, \cos \theta^{*}\right)}{L_{i n t} \cdot \frac{d L_{\gamma \gamma}\left(W_{\gamma \gamma}\right)}{d W_{\gamma \gamma}} \cdot \Delta W_{\gamma \gamma} \cdot \Delta\left|\cos \theta^{*}\right|} \tag{1}
\end{equation*}
$$

$>$ The W-dependent cross section of $\gamma \gamma \rightarrow \eta^{\prime} \pi^{+} \pi^{-}$obtained by a summation over $\Delta\left|\cos \theta^{*}\right|$ bins:
$\sigma_{\gamma \gamma \rightarrow \eta^{\prime} \pi^{+} \pi^{-}}\left(W_{\gamma \gamma}\right)=\sum_{\Delta_{i}\left|\cos \theta^{*}\right|} \frac{d \sigma_{\gamma \gamma \rightarrow \eta^{\prime} \pi^{+} \pi^{-}}\left(W_{\gamma \gamma}, \cos \theta^{*}\right)}{d\left|\cos \theta^{*}\right|} \Delta_{i}\left|\cos \theta^{*}\right|$
$>$ The differential cross section in $\left|\cos \theta^{*}\right|$ averaged over W bins within a certain W region:
$\sigma_{\gamma \gamma \rightarrow \eta^{\prime} \pi^{+} \pi^{-}}\left(\cos \theta^{*}\right)=\frac{\sum\left(\frac{\mathrm{d} \sigma_{\gamma \gamma \rightarrow \eta^{\prime} \pi^{+} \pi^{-}}\left(\mathrm{W}_{\gamma \gamma}, \cos \theta^{*}\right)}{\mathrm{d}\left|\cos \theta^{*}\right|} \Delta \mathrm{W}_{\gamma \gamma}\right)}{\sum \Delta \mathrm{W}_{\gamma \gamma}}$

$\sigma\left(\gamma \gamma \rightarrow \eta^{\prime} \pi \pi\right)$: fitting $\left|\Sigma \mathrm{P}^{*} \mathrm{t}\right|$

Two-photon signal yield is extracted by fitting $\left|\Sigma \mathrm{P}^{*} t\right|$ distribution in data for each 2-dimension bin.

$\sigma\left(\gamma \gamma \rightarrow \eta^{\prime} f_{2}(1270)\right)$: fitting $\mathrm{M}(\pi \pi)$

$\mathrm{f}_{2}(1270)$ yield is extracted from fitting $\mathrm{M}\left(\pi^{+} \pi^{-}\right)$distribution in data for each 2-dimensional bin.

$2.26<\mathrm{W}<2.30$
$0.4<\left|\cos \theta^{*}\right|<0.5$

$2.62<\mathrm{W}<2.66$
$0.4<\left|\cos \theta^{*}\right|<0.6$

$2.72<\mathrm{W}<2.78$
$0.4<\left|\cos \theta^{*}\right|<0.6$
$>$ Signal shape is described by a Breit-Wigner with Γ and M fixed.
$>$ Normalized η^{\prime}-sdb in data is fixed.
$>$ b_any is described by a $4^{\text {th }}$ order exponential polynomial.

Result of $\sigma\left(\gamma \gamma \rightarrow \eta^{\prime} f_{2}(1270)\right)$

- Green dashed is the leading term QCD predictions for neutral meson pairs $\sim 1 / \mathrm{W}^{10}$ [1].
- No prediction for $\gamma \gamma \rightarrow \eta^{\prime} f_{2}(1270)$.
- Assuming $\sigma \sim 1 / \mathrm{w}^{\mathrm{n}}$.
- We get the fitted value of $\mathrm{n}=5.1 \pm 1.0$ for $\left|\cos \theta^{*}\right|<1$ and $n=7.5 \pm 2.0$ for $\left|\cos \theta^{*}\right|<0.6$.
[1] Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Euro.Phys.Jour.C (2014) 74:3026.

Result of $\sigma(\gamma \gamma \rightarrow \eta ’ \pi \pi)$

(a). Structure near $1.8 \mathrm{GeV} / \mathrm{c}^{2}$ is contributed from $\mathrm{X}(1835)$ or $\eta(1760)$ [1].
(b) Enhancement at $2.1 \mathrm{GeV} / \mathrm{c}^{2}$ is possible contribution from $\gamma \gamma \rightarrow \mathrm{I}(2100) \rightarrow \eta^{\prime} \mathrm{f}_{0}(980)$.
[1]C.C. Zhang et al. Belle Collaboratin,Phys. Rev D86, 052002 (2012).

Cross Section in $\left|\cos \theta^{*}\right|$

- Black dots with error bar are the $\left|\cos \theta^{*}\right|$ dependent cross sections in data

$$
\gamma \gamma \rightarrow \eta^{\prime} \mathrm{f}_{2}(1270)
$$

Red line is QCD predictions for neutral meson pairs $\sim 1 / \sin ^{4} \theta$

Measured cross section after subtracting the $\gamma \gamma \rightarrow \eta^{\prime} f_{2}(1270)$ contribution in W region above 2.26 GeV . The distributions in data comparable with a uniform distribution (red lines).

Summary

■ Results on the $\gamma \gamma \rightarrow \eta$ ' $\pi \pi$ process for both $\eta>\rightarrow \eta \pi \pi \& \gamma \rho$ decays using $941 \mathrm{fb}^{-1}$ Belle data are presented.
\square First observation of $\eta_{C}(2 S) \rightarrow \eta \prime \pi \pi$ with a significance $\mathbf{5 . 5 \sigma}$ including systematic error.
$>$ Consistent ratio $\mathrm{R}=\frac{\Gamma_{\gamma \gamma}\left(\eta_{c}(2 S)\right) B\left(\eta_{c}(2 S)\right)}{\Gamma_{\gamma \gamma}\left(\eta_{c}(1 S)\right) B\left(\eta_{c}(1 S)\right)}$ between $K \bar{K} \pi$ (BaBar) and $\eta^{\prime} \boldsymbol{\pi} \boldsymbol{\pi}$ (Belle) decays, is interesting in QCD test.

■ First observation of $\left.\boldsymbol{\eta}_{\mathbf{c}} \mathbf{(1 S}\right) \rightarrow \boldsymbol{\eta}^{\prime} \mathbf{f}_{\mathbf{0}} \mathbf{(2 0 8 0)}$ decay with $\mathrm{f}_{0}(2080) \rightarrow \pi^{+} \pi^{-}$with a significance 20σ, and its mass and width is determined to be

$$
\begin{aligned}
& \mathrm{M}=2083_{-66}^{+63} \pm 32 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=178_{-178}^{+60} \pm 55 \mathrm{MeV} .
\end{aligned}
$$

■ Measurements of pseudo-scalar tensor pair $\boldsymbol{\eta}^{\prime} \mathbf{f}_{\mathbf{2}}(\mathbf{1 2 7 0})$ production, as well as that of η ' $\pi \pi$, are made for the first time.

Thanks for your attention!

Backup

Selection criteria

$\gamma \rho$ mode

Variable	cut value
$P_{\text {sum }}$	$<5.5 \mathrm{GeV} / c$
$E_{\text {sum }}$	$<4.5 \mathrm{GeV}$
$N_{\pi^{+}}, N_{\pi^{-}}$	2,2
$N_{\text {charge }}$	4
$N_{k^{+}}+N_{k^{-}}$	<1
$N_{p^{+}}+N_{p^{-}}$	<1
$N_{e^{+}}+N_{e^{-}}$	<1
$k_{s^{-}}$veto	$\notin(0.508,0.488)\left[\mathrm{GeV} / c^{2}\right]$
$M\left(\eta^{\prime}\right)$	$(0.942,0.974)\left[\mathrm{GeV} / c^{2}\right]$
π^{0}, η-veto	$\notin(0.115,0.155),(0.524,0.572)\left[\mathrm{GeV} / c^{2}\right]$
E_{γ}	$>100 \mathrm{MeV}$
Σp_{t}	$<0.1 \mathrm{GeV} / c$

$\eta \pi \pi$ mode

Variable	cut value
$P_{\text {sum }}$	$<5.5 \mathrm{GeV} / c$
$E_{\text {sum }}$	$<4.5 \mathrm{GeV}$
$N_{\pi^{+}}, N_{\pi^{-}}$	2,2
$N_{\text {charge }}$	4
$N_{k^{+}}+N_{k^{-}}$	<1
$N_{p^{+}}+N_{p^{-}}$	<1
$N_{e^{+}}+N_{e^{-}}$	<1
$k_{s}-$ veto	$\notin(0.488,0.508)\left[\mathrm{GeV} / c^{2}\right]$
$E(\gamma)$	$>100 \mathrm{MeV}$
$M(\eta)$	$(0.524,0.572)\left[\mathrm{GeV} / c^{2}\right]$
$M\left(\eta^{\prime}\right)$	$(0.951,0.963)\left[\mathrm{GeV} / c^{2}\right]$
$\pi^{0}-$ veto	$\notin(0.15,0.155)\left[\mathrm{GeV} / c^{2}\right]$
Σp_{t}	$<0.15 \mathrm{GeV} / c$

$|\Sigma P * t|$ is optimized with the best $s / \sqrt{s+b}$ in $\eta_{c}(1 s)$ and $\eta_{c}(2 s)$ signal region.

From PDG 2017

	Branching fraction
$\eta_{c}(1 S) \rightarrow K \bar{K} \pi$	$(7.3 \pm 0.5) \%$
$\eta_{c}(2 S) \rightarrow K \bar{K} \pi$	$(1.9 \pm 1.2) \%$
$B \rightarrow K\left(\eta_{c}(1 S) \rightarrow K_{s} K \pi\right)$	$(2.7 \pm 0.6) \times 10^{-5}$
$B \rightarrow K\left(\eta_{c}(2 S) \rightarrow K_{s} K \pi\right)$	$\left(3.4_{-16}^{+2.3}\right) \times 10^{-6}$

χ^{2} scan for $\mathrm{f}_{0}(2080)$ mass and width

From the chi2 scan we get:
$\mathrm{M}=2088+60-54 \mathrm{MeV} / \mathrm{c} 2$
$\mathrm{W}=177+62-177 \mathrm{MeV}$
Which are comparable with the results from MINOS fit.

From MINOS fit:
$\mathrm{M}=2083+63-67 \mathrm{MeV} / \mathrm{c} 2$
$\mathrm{W}=178+60-178 \mathrm{MeV}$

```
Possible intermediate from \(\gamma \gamma \rightarrow \mathrm{I}(2100) \rightarrow \eta^{\prime} \mathrm{f}_{0}(980)\)
```



```
- In \(\mathrm{f}_{0}(980)\) signal region \(0.86<\mathrm{M}(\pi \pi)<1.10 \mathrm{GeV} / \mathrm{c}^{2}\).
- \(\mathrm{I}(2100)\) with statistic significance \(3.5 \sigma\).
```


[^0]: [1] Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Euro.Phys.Jour.C (2014) 74:3026.
 [2] M. Benayoun and V. L. Chernyak., Nucl.Phys. B329, 285 (1990).
 [3] M. Diehl, P. Kroll, and C. Vogt., Phys. Lett. B532, 99-110 (2002).

