
Recent QCD-related studies with the BaBar detector

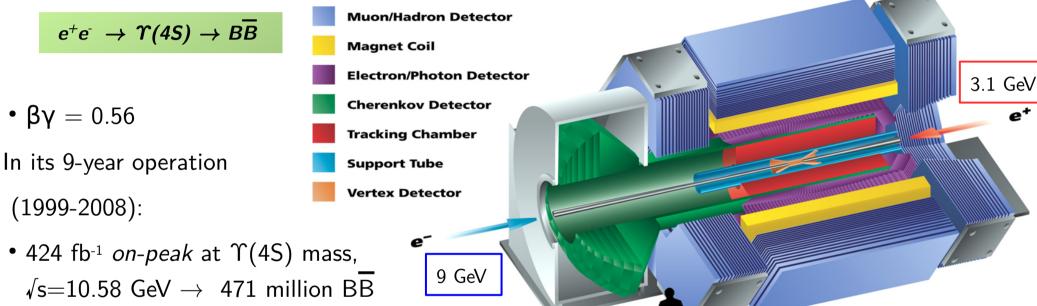
16-20 April 2018, Port Island, Kobe

Laura Zani
INFN and University of Pisa

on behalf of the BaBar Collaboration

Outline

- The BaBar experiment
- Measurement of the D*+(2010) D+ mass difference BABAR, PRL 119.202003 (2017), arXiv: 1707.09328
- Measurement of the spectral function for the $\tau \to K\text{-}K_s\nu_\tau$
- Search for the B-meson decay to four baryons $B \rightarrow p p p p$ Submitted to PRD! arXiv:1803.10378



The BaBar Experiment

B-factories: dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent BB pairs \rightarrow CP-Violation (CPV) studies and New Phisics (NP) indirect searches.

- \sqrt{s} =10.58 GeV \rightarrow 471 million \overline{BB} pairs.
- 44 fb-1 off-peak, in the continuum hadronization region, √s = 10.54 GeV

Clean environment allows **outstanding tracking** and **vertex** reconstruction; dE/dx, $cos\theta_c$ measurements provide **excellent PID** performance \rightarrow high efficiency with pion mislD below 1% at any momentum.

Measurement of the $(D^{*+}(2010) - D^{+})$ mass difference

Motivation for measuring $\Delta m_{+} \equiv m(D^{*+}(2010)) - m(D^{+})$

- Extract $\Delta m_D \equiv m(D^+)-m(D^0) = \Delta m_0 \Delta m_+$, by combining with the measurement of $\Delta m_0 \equiv m(D^{*+}(2010)) m(D^0)$
- Constrain the symmetry breaking due to u-d quark mass difference in chiral perturbation theory & lattice QCD

Previously:

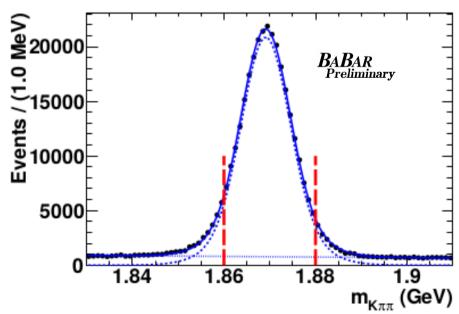
- Most accurate Δm_D measurement from LHCb, $\Delta m_D =$ (4.76 \pm 0.12 \pm 0.07) MeV JHEP 06, 065 (2013)
- CLEO reported the measurement $\Delta m_+=$ (140.64 \pm 0.08 \pm 0.06) MeV based on the decay chain D*+ \to D+ π^0 with D+ \to K- π^+ π^+ PRL 69, 2046 (1992)
- BaBar measurement of Δm_0 using the decay chain $D^{*+} \to D^0 \pi^+$ with $D^0 \to K^- \pi^+$ and also $D^0 \to K^- \pi^+ \pi^- \pi^+$ PRL 111, 111801 (2013)

Analysis Strategy

Reconstruct the decay chain:

$$D^{*+} \to D^+ \pi^0, D^+ \to K^- \pi^+ \pi^+$$

- Extract Δm_+ by fitting the distribution of the mass difference between the reconstructed D*+ and D+
- Define the PDF: MC resolution function (signal)+ threshold function (background contamination)
- Combine with the BaBar measurement of Δm_0
- Obtain **∆**m_D

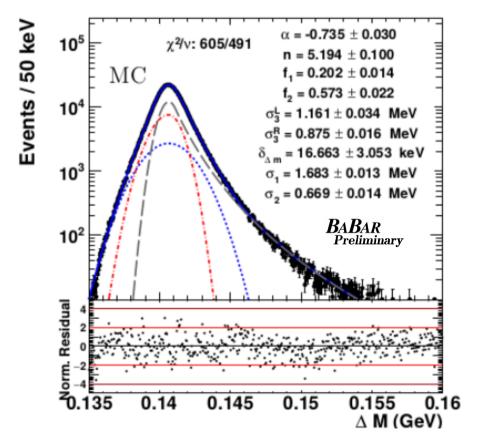


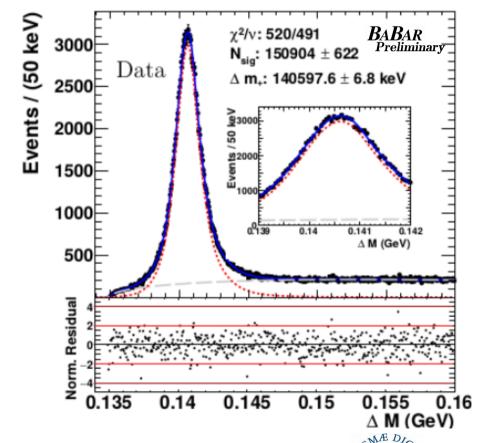
Event Reconstruction and Selection

$$D^{*+} \to D^+ \pi^0, D^+ \to K^- \pi^+ \pi^+$$

- "Slow" π^0 (p_{π} <300 MeV):
 - resolution on pion momentum improved (\sim 3%) by the kinematic fit to the photon pair invariant mass \rightarrow constrained to the nominal invariant mass of π^0 .
 - MC-Data correction for the energy loss in the EMC is also applied
- D^{*+} (p cM >3 GeV)
 - reject background contamination from D*+ \rightarrow D0 π + : m(K- π + π 0) m(K- π + π 0) < 160 MeV
 - geometric and kinematic constraint on the D*+ production vertex and on D+ decay vertex ($\text{Prob}(\chi^2) > 0.1\%$)

- **D**+ (momentum resolution $\sim 0.5\%$):
 - pion/kaon particle identification and a selection on the distribution of polar angle of the reconstructed tracks + invariant mass selection
 - selection based on a likelihood variable
 (Decay vertex, Dalitz-plot position)





Fitting Procedure

1. Model the signal component in the Δm_+ distribution on simulation and extract the shape parameters (*resolution function* based on Gaussian-like PDFs).

2. Apply an unbinned maximum likelihood fit to the data using as PDF resolution function (signal) + threshold function (combinatorial background) and extract Δm .

Results & Summary (I)

- From the fitted signal events (150 904 \pm 622), we measure $\Delta m_+ =$ (140 597.6 \pm 6.8 $_{\rm stat}$) keV
- The extracted mass difference is corrected for the **bias** of **3.4 keV** produced by peaking background not considered in the fit (pseudoexperiments)
- The main sources of systematic uncertainty are:
 - detector effects not accounted for in the simulation;
 - MC-data differences in the EMC calibration (photon energies).
- Total systematic uncertainty = 12.9 keV

Summarizing, after adding the fit bias

$$\Delta m_{_+} = (140\ 601.0 \pm 6.8 [stat] \pm 12.9 [syst]) \ keV$$

• Combine with the measurement of $\Delta m_0 = (145~425.9 \pm 0.5 [stat] \pm 1.8 [syst])$ keV based on the same data set and obtain:

$$\Delta m_D = (4\ 824.9 \pm 6.8[stat] \pm 12.9[syst]) \text{ keV}$$

→ 5 times more accurate than world average

Measurement of the spectral function for the $\tau^- \rightarrow K^- K_{\varsigma} \nu_{\tau}$

Motivation

- T decays are an optimal laboratory for NP searches (Lepton Flavor Violation, Hadron Vacuum Polarization contribution to g-2, Standard Model test of CPV)
- the measurement of the *invariant mass spectrum of the* K^-K_S *system* allows to measure the spectral function

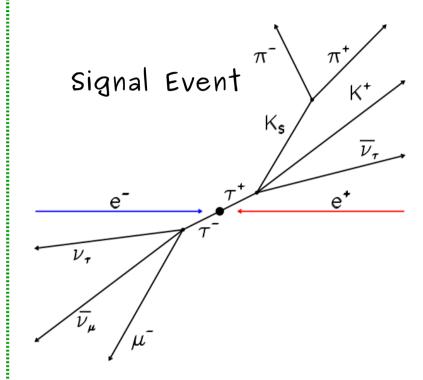
$$V(q) = \frac{m_{\tau}^{8}}{12\pi C(q)|V_{\rm ud}|^{2}} \frac{\mathcal{B}(\tau^{-} \to K^{-}K_{\rm S}\nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-}\bar{\nu_{e}}\nu_{\tau})} \frac{1}{N} \frac{dN}{dq}$$

and provide information on isovector part (Isospin=1) of the $e^+e^- o KK$ cross section:

$$\sigma_{e^+e^- \to K\bar{K}}^{I=1}(q) = \frac{4\pi^2 \alpha^2}{q^2} V(q)$$

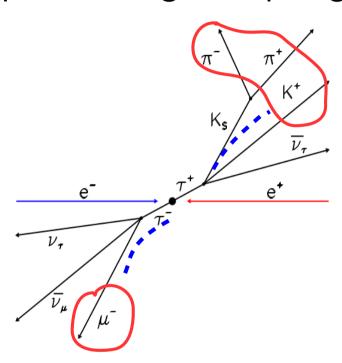
Previously

- BaBar: measurement of the e⁺ e $^ \rightarrow$ K $\overline{\text{K}}$ PRD 88, 3, 032013 (2013).
- CLEO: K- K_s mass spectrum measurement on 2.7×10^6 τ pairs PRD 53, 6037 (1996)
 - ightarrow significantly improving on this measurement by using the full BaBar data sample of $10^9~ au$ pairs

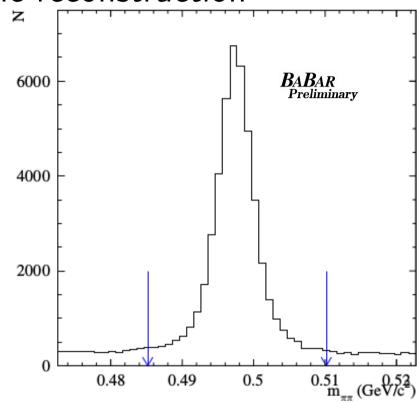


Analysis Strategy

- Exploit the event topology to reconstruct the signal signature
- Apply a signal-like selection for rejecting the background
- Subtract the remaining background contaminating the K^-K_S invariant mass spectrum
- Correct for detection efficiency and extract:
 - The mass spectrum of the K- K_S system
 - The branching fraction BF($\tau \to K^{\mbox{\tiny -}} \, K_{\mbox{\tiny S}} \, \nu_{\tau})$



 \rightarrow Compute the spectral function V(q) from the measured mass spectrum

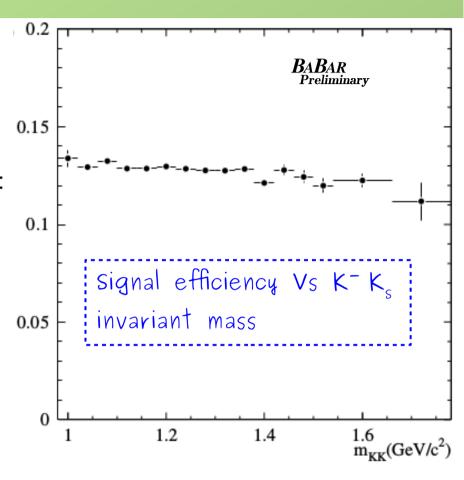


Event Reconstruction and Selection

Exploit the signal topology for the reconstruction

- 4 charged tracks with total charge = 0
- 2 oppositely charged tracks coming
 from the interaction point (PID applied,
 one lepton + one kaon)

- Selection on angular distribution and measured momenta of the reconstructed tracks
- Constrain the reconstructed invariant mass of two charged pions to lie within 25 MeV/ c^2 of nominal K_s mass.


Event Selection (II)

- The applied event selection corresponds to an average signal efficiency (computed on MC simulation) of 13%.
- The background mainly come from two sources:
 - \rightarrow **T background**, T⁺T⁻ events

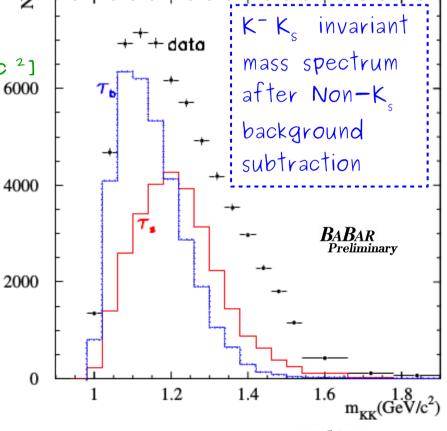
Reduced by a factor of 3.5

ightarrow qq background, $e^+e^ightarrow qq$ events

Reduced by a factor of 5.5

ightarrow The remaining background is subtracted, using both the data (sideband) or computing the expected amount of background events by exploiting previous measurements and MC simulations.

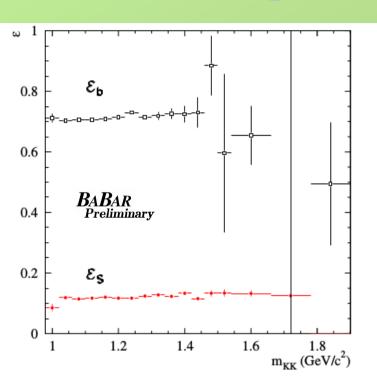
Background Subtraction

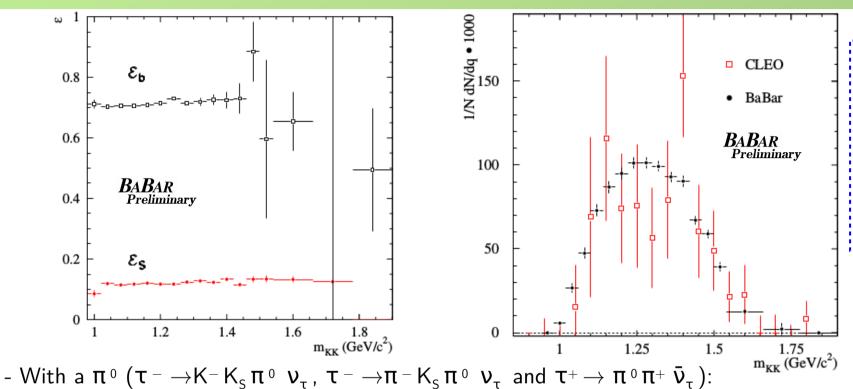

- 1) Non-K_s background (combinatorial background) is subtracted using data and the MC simulation.
- $-N(N_{sb})$ = total number of events measured in data (in the sideband region only)
- $N_{KS}(N_b)$ = number of true (fake) K_s candidates of which a fraction $\beta(\alpha)$ is estimated to be in the sideband region

$$N=N_{\rm K_S}+N_{\rm b},\ N_{\rm sb}=\varpi\ N_{\rm b}+\beta\ N_{\rm K_S}$$
 Signal region: [nominal K $_{\rm s}$ mass ± 0.0125 GeV/c 2] 6000 Sideband region: otherwise

- 2) τ -background can be:
- without a π⁰

$$(au^- o \pi^- \, \mathsf{K}_{\mathsf{S}} \, \, \mathsf{v}_{\mathsf{\tau}} \, \, \mathsf{and} \, \, \mathsf{\tau}^+ o \pi^+ \, \, \bar{\mathsf{v}}_{\mathsf{\tau}})$$
:


• their branching fractions are measured with precision better than $2\% \to \text{contamination}$ computed from MC simulation and subtracted



τ-background Subtraction (II)

K- K invariant mass spectrum after t background subtraction

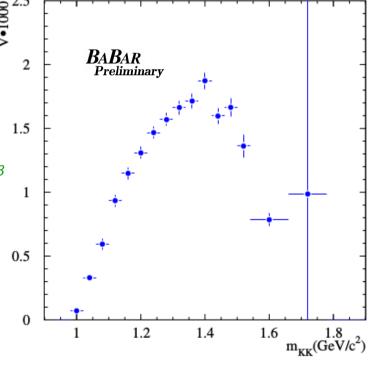
- generally measured with lower accuracy (\sim 5%) \rightarrow subtracted using *data*
 - A $\pi^{\,0}$ candidate is defined as a pair of photon whose invariant mass belongs to the range [100-160] MeV/c^2
 - $N_s(N_b)$, $\varepsilon_s(\varepsilon_b)$ = number of signal (background) events with at least one $\pi^{\,0}$ candidate detected, and the corresponding detection efficiency evaluated on MC simualtion.

L.Zani for BaBar Collaboration - DIS2018, Kobe

$$N_{0\pi^0} = (1 - \epsilon_s) N_s + (1 - \epsilon_b) N_b$$

$$N_{1\pi^0} = \epsilon_s N_s + \epsilon_b N_b,$$

Results & Summary (II)


- Systematic uncertainties in the BF($\tau \to K^- K_S \nu_\tau$) are estimated by:
 - varying the selection requirements
 - comparing MC-Data distributions (background subtraction contribution)
- The preliminary BF for the decay $\tau \to K^-K_S \, \nu_\tau$ is in good agreement with the world average and of comparable accuracy.
 0.70
 0.9
 nb

$$BF = N_{sig}/(arepsilon \ L \ BF_{lep} \sigma_{ au au}) = (0.740 \pm 0.011 \pm 0.021) imes 10^{-3}$$

• The *spectral function*

$$V(q) = \frac{m_\tau^8}{12\pi C(q)|V_{\rm ud}|^2} \frac{\mathcal{B}(\tau^- \to K^- K_{\rm S} \nu_\tau)}{\mathcal{B}(\tau^- \to e^- \bar{\nu_e} \nu_\tau)} \frac{1}{N} \frac{dN}{dq}$$
 is computed from the measured K- K_S invariant mass spectrum.

Search for the B-meson decay to four baryons

Motivation

- B-mesons have large mass and they are able to decay to final states with baryons
 - → optimal tool for better understanding the mechanism of *hadronization into*baryons (theoretical models poorly understood) [**]
- **Baryon puzzle**: inclusive BF $(\sim7\%)$ ≠ Σ exclusive baryonic channels $(\sim1\%)$
- Experimental features: **threshold enhancement** and **branching fraction hierarchy**

Previous measurement at BaBar:

• Upper limit on BF($\overline B{}^0\!\!\to\Lambda_{_c}^{^+}$ p $\overline p$ $\overline p$) $< 2.8 \times 10^{\text{-6}}$ at 0.90 CL

(BABAR, Phys. Rev. D 89, 071102 (2014)

Estimate of the BF(B $^0\rightarrow p p p p$):

- ullet Cabibbo suppression, bightarrow u
- Phase space contribution, using the Q-values of the 2 reactions

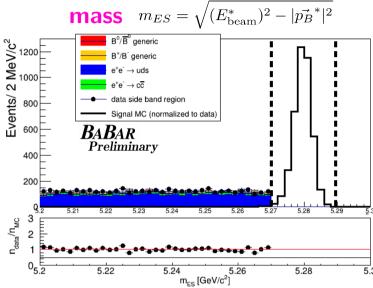
Working hypothesis:

$$(B^0 \to pp\bar{p}\bar{p}) \approx BF^{UL}(\bar{B^0} \to \Lambda_c^+ \bar{p}p\bar{p}) \cdot \frac{|V_{ub}|^2}{|V_{cb}|^2} \cdot \frac{Q_{pp\bar{p}\bar{p}}}{Q_{\Lambda_c^+ p\bar{p}\bar{p}}} \sim 10^{-7}$$

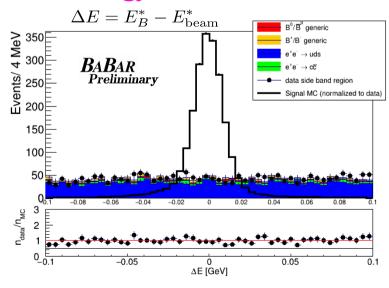
First decay mode into four-baryon final state, no PDG limit yet!

[**] V.L. Chernyak and I.R. Zhitnitsky, Nuclear Physics B, Vol. 345, 1 pp. 137-172 (1990); He Xiao-Gang, Li Tong, Li Xue-Qian and Wang Yu-Ming, Phys. Rev. D, 75, id. 034011 (2007).

Event Reconstruction

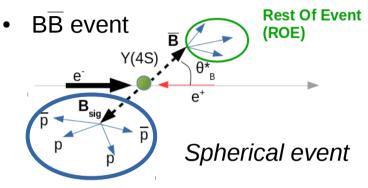

- Performed as <code>blind analysis</code> \to without looking at the <code>signal region</code> in data (5.27 < m_{ES} < 5.29 $\,$ GeV/c²)
- Sideband region data ($\rm m_{ES} < 5.27~GeV/c^2)$ used to validate studies on background Monte Carlo samples

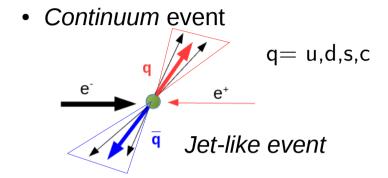
(*EvtGen* for generic B decays from $\Upsilon(4S)$, *JetSet* for continuum events)

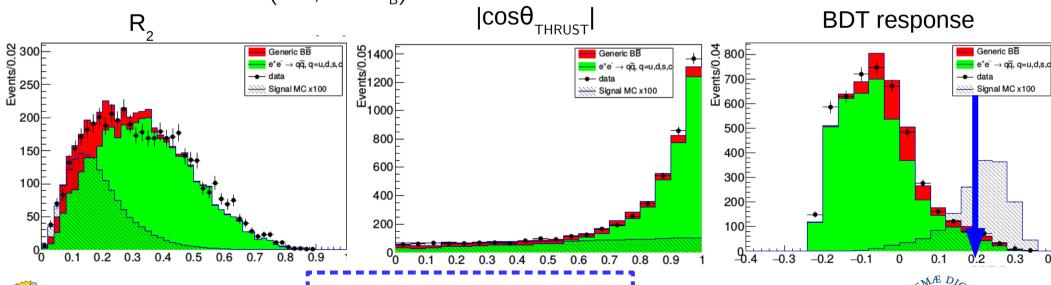

- Four oppositely charged tracks, coming from the Interaction Point, identified as two **protons** and two antiprotons
- Kinematic fit to the common vertex with a $Prob(\chi^2) > 0.1\%$
- Loose cuts on kinematic variables

Beam energy substituted

Energy difference





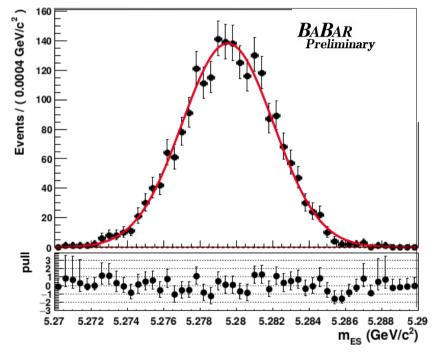

Event Selection

 ${f P}$ Mainly ${f combinatorial\ background\ }$ due to real protons from ${\it continuum\ events}\ {f e^+e^-}
ightarrow {f qq}$

• Further rejection achieved by applying a signal-like selection on the output of a multivariate Boosted Decision Tree (BDT) algorithm, trained on **event shape variables** (R_2 , $|\cos\theta_{THRUST}|$), on angular and kinematic variables (ΔE , $\cos\theta_{B}^*$).

Signal efficiency $\epsilon=21\%$

L.Zani for BaBar Collaboration - DIS2018, Kobe

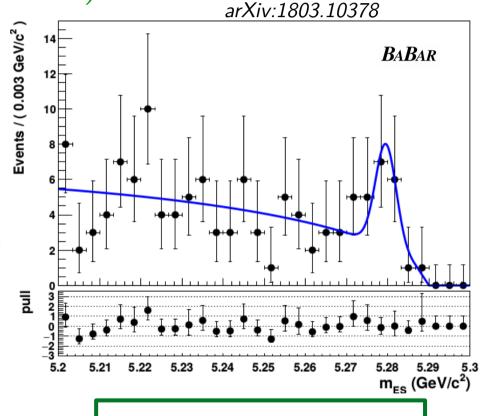

Fitting Procedure

• The signal yield is extracted from an *unbinned* extended maximum likelihood fit to the data m_{ES} distribution, in the range $5.2 < m_{ES} < 5.3 \text{ GeV/c}^2$, after the BDT selection is applied.

$$\log L(N_{\text{sig}}, N_{\text{bkg}}; x) = -(N_{\text{sig}} + N_{\text{bkg}}) + \sum_{i=1}^{n} \log(N_{\text{sig}} \cdot f_{\text{sig}}(x_i) + N_{\text{bkg}} \cdot f_{\text{bkg}}(x_i))$$

- Signal PDF $(f_{\scriptscriptstyle sig}) o {\sf Gaussian}$ function
- Background PDF $(f_{bkg}) \rightarrow$ empirical ARGUS function, depending on 2 parameters: the *cutoff* (fixed to the endpoint 5.28 GeV/c² of the m_{ES} distribution) and the **shape parameter**.
- The shape parameter, the background and signal yields (N_{bkg}, N_{sig}) are extracted from the fit to the data.

Gaussian function fit to Signal MC


Signal Yield Extraction and BF Estimate

The fit to the m $_{\rm ES}$ distribution gives ${\sf N}_{\sf sig}=(11.1\pm4.6)$, with a 2.9σ significance

$$\rightarrow$$
 BF = $(1.14 \pm 0.47 \pm 0.17) \times 10^{-7}$

- \rightarrow The statistical uncertainty on N_{sig} is the main source of uncertainty on the BF.
- \rightarrow Systematic uncertainties contribute as a further 15% relative uncertainty in the BF.

Variable	Source	Relative systematic
		uncertainty $(\%)$
$N_{B\overline{B}}$	B counting	0.6
$N_{ m sig}$	ARGUS cutoff	0.9
ϵ	MC statistics	0.2
ϵ	PID efficiency	0.9
ϵ	Track finding efficiency	0.9
ϵ	BDT selection	2.2
ϵ	Decay model	14
Total		15

Bayesian upper limit at 90% CL: 2×10^{-7}

Summary (III)

SUBMITTED to PRD arXiv:1803.10378

- The analysis for the search of the BF($B^0 \rightarrow p p p$) has been performed on 471 million BB pairs at BaBar
 - → The first upper limit on this channel is set!

- 11 decay events with a significance of 2.9 standard deviations
- BF $^{UL} = 2 \times 10^{-7}$ at 90% CL

Thanks for your attention.

Backup: Measurement of the (D*+(2010) – D+) mass difference

Fitting Procedure Details

The total PDF corresponds to the sum of the signal and background PDFs :

$$S(\Delta m) = f_1 G(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_1)$$

$$+ (1 - f_1) \left[f_2 CB(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_2, \alpha, n) + (1 - f_2) BfG(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_3^L, \sigma_3^R) \right],$$

$$T(\Delta m; \kappa) = \Delta m \sqrt{u} \exp(\kappa \cdot u)$$

o The fixed parameters in the fit to the data are the fraction f_1 , f_2 , the CB tails parameters and the bias $\delta_{\Delta m}$

Results

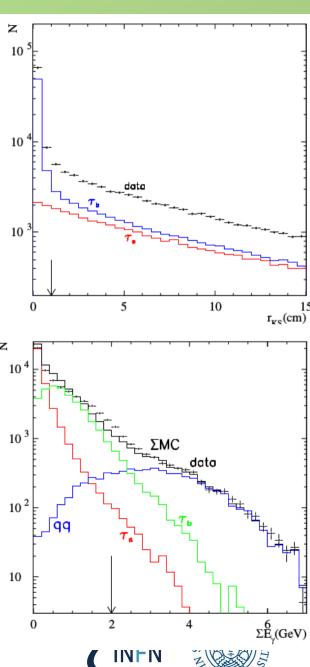
• Sources of systematic uncertainty:

Detector effects not accounted for in the simulation

Rescaling technique for evaluating MC-Data differences

Source	Δm_+ systematic [keV]
Fit bias	1.7
D^{*+} p_{lab} dependence	5.0
$D^{*+}\cos\theta$ dependence	6.9
D^{*+} ϕ dependence	0.0
$m(D_{\rm reco}^+)$ dependence	0.0
Diphoton opening angle dependence	6.1
Run period dependence	0.0
Signal model parametrization	2.1
EMC calibration	7.0
$MC \pi^0$ momentum rescaling	0.5
Total	12.9

Backup: Measurement of the spectral function for the $\tau \to K_s K^- \nu_{\tau}$



The Event Selection

- Lepton candidate momentum (lab frame) > 1.2 GeV/c, (c.m. frame) < 4.5 GeV/c.
- $\text{Cos}\theta_{\text{l}} < 0.9$, where θ_{l} is the lepton polar angle is measured in the lab frame.
- \bullet Charged kaon candidate momentum 0.4 < p $_{\rm K}$ < 5 GeV/c.
- $-0.7374 < \cos \theta_{\kappa} < 0.9005$, with θ_{κ} the polar angle.
- K $_S$ flight length r_{KS} , measured as a distance between the $\pi^+\pi^-$ vertex and the K- K_S vertex, must be larger than 1 cm.
- $\Sigma E_{\gamma} <$ 2 GeV, where ΣE_{γ} is the total energy of all photons with $E_{\nu} >$ 10 MeV found in the event.
- The thrust value is required to be T > 0.875.
- $\theta_{lh} > 110^{\circ}$, where θ_{lh} is the angle between the lepton and the K- K_S system.

Results

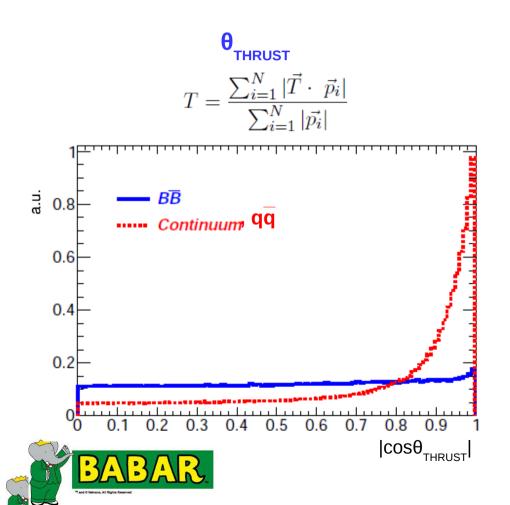
• Systematic uncertainties in the BF($\tau \to K^- K_S \nu_{\tau}$):

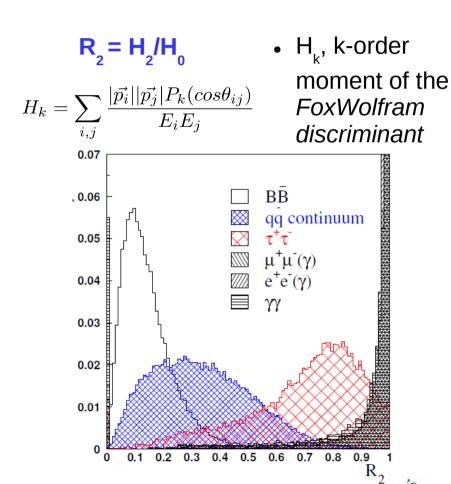
Luminosity Requirement on the K_s decay length Estimated by varying the selection	1.0
	0.4
	0.4
Requirement on the charged kaon momentum	0.9
Requirement on the lepton momentum Criteria	0.5
Requirement on the lepton $\cos \theta$	0.6
Requirement on ΣE_{γ} energy Dependent on the K-K _s	1.0
Tracking efficiency	1.0
PID invariant mass	0.5
non- $K_{\rm S}$ background subtraction	0.4
$\tau^+\tau^-$ background without π^0 Evaluated as the observed difference in the	0.2
$\tau^+\tau^-$ background with π^0	1.6
$q\bar{q}$ background mass spectra between data and MC	0.5
total	2.8

 \bullet Systematic uncertainties in the $K^{\scriptscriptstyle -}\,K_{\scriptscriptstyle S}$ invariant mass spectrum:

$m_{K^-K_S}(GeV)$	$N_s/N_{tot} \times 10^3$	$V \times 10^3$
0.98 - 1.02	5.6 ± 1.4	$0.071 \pm 0.018 \pm 0.007$
1.02 - 1.06	26.0 ± 2.7	$0.331 \pm 0.034 \pm 0.030$
1.06 - 1.10	46.0 ± 3.2	$0.593 \pm 0.042 \pm 0.052$
1.10 - 1.14	70.8 ± 3.5	$0.934 \pm 0.046 \pm 0.065$
1.14 - 1.18	84.4 ± 3.4	$1.148 \pm 0.047 \pm 0.069$
1.18 - 1.22	92.3 ± 3.3	$1.309 \pm 0.046 \pm 0.065$
1.22 - 1.26	98.2 ± 3.2	$1.468 \pm 0.048 \pm 0.059$
1.26 - 1.30	98.4 ± 3.2	$1.569 \pm 0.050 \pm 0.063$
1.30 - 1.34	96.3 ± 3.0	$1.663 \pm 0.052 \pm 0.050$
1.34 - 1.38	90.2 ± 2.9	$1.715 \pm 0.052 \pm 0.052$
1.38 - 1.42	87.8 ± 3.1	$1.873 \pm 0.066 \pm 0.056$
1.42 - 1.46	65.1 ± 2.6	$1.597 \pm 0.064 \pm 0.043$
1.46 - 1.50	57.3 ± 2.5	$1.6665 \pm 0.073 \pm 0.042$
1.50 - 1.54	38.1 ± 2.5	$1.361 \pm 0.090 \pm 0.032$
1.54 - 1.66	$3 \times (12.3 \pm 0.8)$	$0.785 \pm 0.049 \pm 0.016$
1.66 - 1.78	$3 \times (2.2 \pm 3.4)$	$0.986 \pm 1.52 \pm 0.020$

Backup: Search for the B-meson decay to four baryons





Event shape variables

Shape variables: $\boldsymbol{\theta}_{\text{THRUST}}$, R_2

- θ_{THRUST} , angle between the *thrust axis* of the B_{sig} and that of ROE.
- R₂ provides information about particle direction correlations.

Systematic uncertainties

- BB pairs: calculated from the B counting method
- Systematic uncertainty $\sim 1\%$ (mainly due to the hadronic event selection efficiency)

- Signal pdf choice
- Shape parameter estimates

ightarrow Evaluated by letting them vary in their uncertainty ranges.

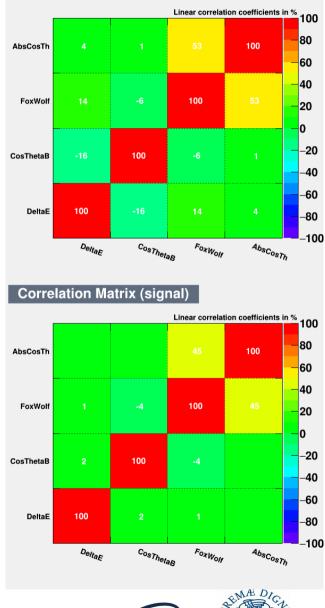
- The MC-data differences are the major source of systematic uncertainty on signal selection efficiency, coming from:
 - 1) Tracking (1%)
 - 2) PID (**0.86%**)

Weighting technique

- 3) BDT (**2.2%**)
- 4) Decay model implemented in the Signal MC generation (14%)

BDT uncertainty study

Weighting technique


for each input variable distribution, BEFORE THE BDT, define bin by bin weights comparing background MC-data samples:

$$w_i = \frac{n_i^{data}}{n_i^{\text{bkgMC}}} \cdot C$$

- ^ Apply the weights to the Signal MC distribution for the given variable AFTER THE BDT \rightarrow recalculate efficiency \rightarrow take as uncertainty the difference between un-weighted and weighted efficiency.
- Uncertainty contributions from all the 4 input variables are summed in quadrature, taking into account the correlation coefficients.

BDT relative uncertainty on $\varepsilon = 2.2\%$

Correlation Matrix (background)

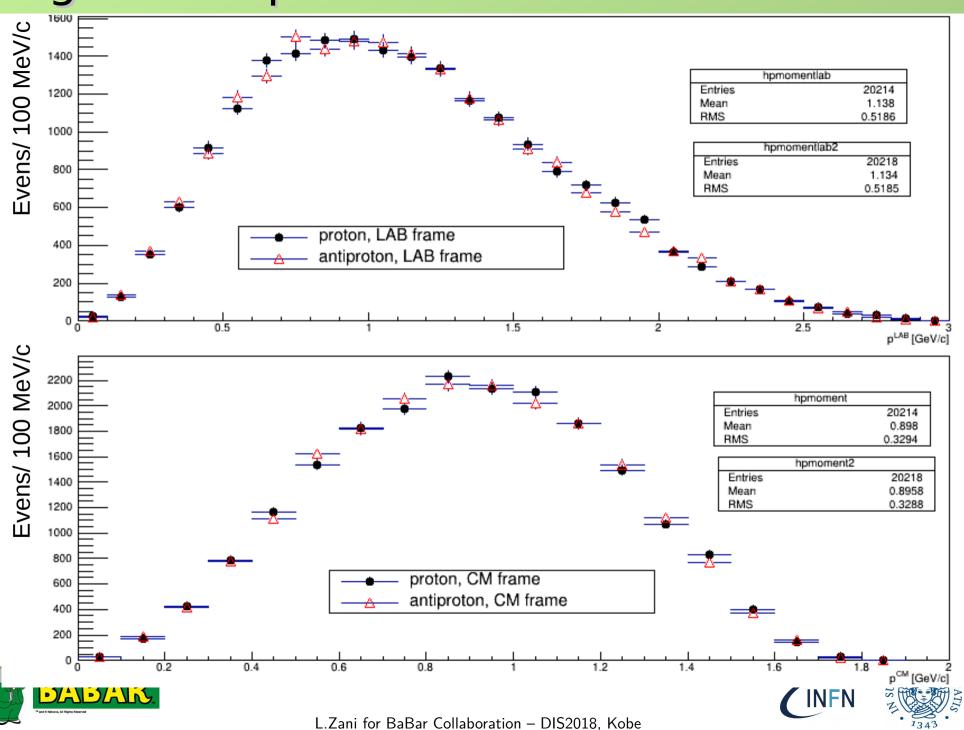
Decay model uncertainty study

- There are no specific four-body baryonic decay models currently known
- DEFAULT implemented in simulated signal MC: **Phase space model**, meaning proton momentum probability is flat in the phase space.
- NO PROTON RELATED VARIABLES (momentum, energy, angular distributions) directly
 exploited in the analysis might relax the selection efficinecy dependence on the decay model
- However, systematic studies show the expected contribution from the decay model to the relative uncertainty on BF is 14%

Implemented with the **re-weighting technique**: based on the comparison between the resulting proton momentum spectra from *2 different decay models*:

- Default (phase space)
- Assuming a different decay model (e.g., intermediate resonances: $B \to XX(\to pp)$)

Weights: bin by bin, normalized ratio of the new spectrum to the default one.


Weights are applied to the signal MC sample after the BDT cut \rightarrow the difference in the efficiencies with/without weights is assumed as systematic uncertainty.

Signal MC: proton momentum distributions

