Title

Precision calculations for top-quark pair production at the LHC

Ioannis Tsinikos

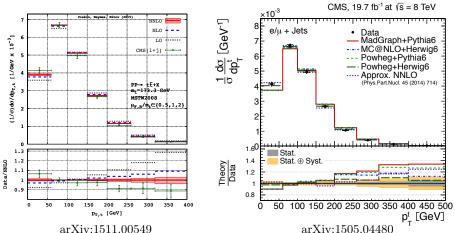
Centre for Cosmology, Particle Physics and Phenomenology (CP3)

Université Catholique de Louvain (UCLouvain)

Technische Universität München (TUM)

arXiv:1705.04105, Michal Czakon, David Heymes, Alexander Mitov, Davide Pagani, IT, Marco Zaro

> Port Island, Kobe, Japan, 17 April 2018 DIS 2018



- Introduction
 - Motivation
 - Different PDF sets
- NNLO QCD + NLO EW
 - Calculation framework
 - PDF comparison
 - Calculation setup
 - Different combination approaches
 - 13 TeV results
 - New PDF sets
- Conclusions
- Additional slides

EW corrections •

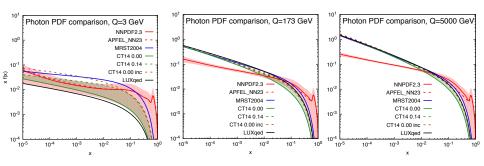
- Tension between theory and data at high $p_T(t)$ region at 8 TeV
- The p_T spectrum in data for top quarks is softer than expected

Outline Motivation

■ FW corrections •

- Theory uncertainties decrease \rightarrow Relevance of EW corrections increase
- Experimental uncertainties will further decrease at LHC13
- $t\bar{t}$ process enters many LHC analyses as signal or background \to NNLO QCD and NLO EW predictions are necessary for $t\bar{t}$ production

Weak: Beenakker et al., Nu.Ph.B.411(1994), Kuhn et al., hep-ph/0610335, arXiv:1305.5773, Bernreuther et al., hep-ph/0508091. Campbell et al., arXiv:1608.03356; QED+gγ LO: Hollik et al., arXiv:0708.1697; FB asymmetry: Hollik et al., arXiv:1107.2606, Kuhn et al., arXiv:1109.6830, Manohar et al., arXiv:1201.3926, Bernreuther et al., arXiv:1205.6580; NLO+EW+decay (NWA): Bernreuther et al., arXiv:1003.3926; EW to $e^+\mu^-\nu\nu b\bar{b}$: Denner et al., arXiv:1607.05571; NLO+EW to $t\bar{t}j$: Gütschow et al., arXiv:1803.00950


- Photon-induced contributions O
 - The (negative) Sudakov suppression can be compensated by the (positive) photon-induced contributions

PDF sets including $\gamma(x, Q)$: MRST2004QED: Martin et al. '04, NNPDF2.3QED: Ball et al. '13, CT14QED(inc): Schmidt et al. '16. NNPDF3.0QED: Bertone, Carrazza '16. LUXged: Manohar et al. '16. NNPDF3.1luxQED. LUXQED17, additional Studies: Harland-Lang, Khoze, Ryskin '16

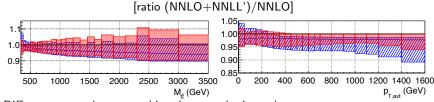
Different PDF sets

Outline

Different assumptions for the PDF sets [©]

- At low Q = 3 GeV there is a similar behaviour
- At high Q values and low x, the NNPDF2.3QED is different due to different DGLAP QCD and QED running (not relevant for $t\bar{t}$)
- $\textbf{ At high } \textit{Q} \text{ values and large } x \rightarrow \left\{ \begin{array}{l} \mathsf{NNPDF2.3QED, APFEL, large} \ \gamma(x, \textit{Q}) \\ \mathsf{CT14QED, LUXqed, small} \ \gamma(x, \textit{Q}) \end{array} \right.$

Calculation framework

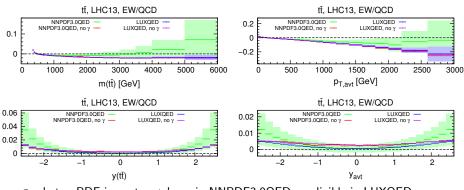

Outline

 $t\bar{t}$ distributions at NNLO QCD+NLO EW accuracy

- PDF sets considered
 - Main results → NNPDF3.0QED, LUXQED
- Scale choice based on arXiv:1606.03350 (*Czakon, Heymes, Mitov*)
- Fastest convergence → Choose the scale that minimizes the NLO and NNLO corrections in an observable by observable basis

$$\mu = \begin{cases} m_T/2 \text{ for } p_{T,avt} \\ H_T/4 \text{ for } m(t\bar{t}), y_{avt}, y(t\bar{t}) \end{cases}$$

• Supported by the NNLO+NNLL' agreement with the NNLO (arXiv:1803.07623)



- Different approaches to combine the perturbative orders
- Additive vs. multiplicative

PDF comparison

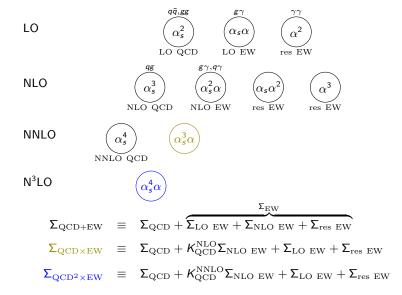
Outline

NNPDF3.0QED vs LUXQED

- photon PDF impact --- large in NNPDF3.0QED, negligible in LUXQED
- LUXQED \longleftrightarrow NNPDF3.0QED (no $\gamma(x, Q)$)
- LUXQED and NNPDF3.0QED in agreement within uncertainties

Calculation setup Additive approach

Outline


$$\begin{array}{cccc} \Sigma_{\rm QCD} & \equiv & \Sigma_{\rm LO~QCD} + \Sigma_{\rm NLO~QCD} + \left[\Sigma_{\rm NNLO~QCD} \right] \\ \\ \Sigma_{\rm EW} & \equiv & \Sigma_{\rm LO~EW} + \Sigma_{\rm NLO~EW} + \left[\Sigma_{\rm res~EW} (\alpha^2 + \alpha_s \alpha^2 + \alpha^3) \right] \\ \\ \Sigma_{\rm QCD+EW} & \equiv & \Sigma_{\rm QCD} + \Sigma_{\rm EW} \end{array}$$

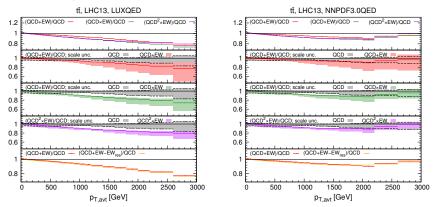
NNLO

NNLO QCD

Different combination approaches

Additive vs multiplicative combination

Different combination approaches

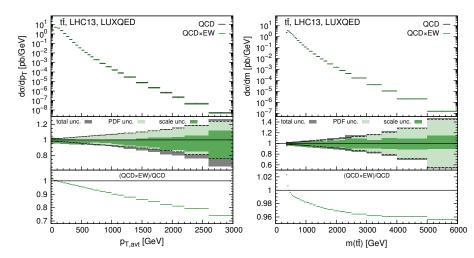

Outline

Additive vs multiplicative combination ©

- Additive (Σ_{QCD+EW})
 - → Exact up to the order of truncation
- Multiplicative ($\Sigma_{\rm QCD \times EW}$)
 - \rightarrow Approximates leading higher order EW corrections i.e. $O(\alpha_s^3 \alpha)$
 - → Rescale NLO EW corrections with NLO QCD K-factors
 - → Motivated by the soft QCD and EW Sudakov log factorisation
 - → Stabilisation of scale dependence
- Stability check (Σ_{OCD²×EW})
 - \rightarrow Use NNLO QCD K-factors to estimate $O(\alpha_s^4 \alpha)$

13 TeV results

Additive vs multiplicative combination

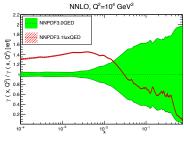


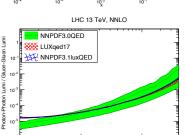
- Central value \rightarrow QCD + EW \sim QCD \times EW
- NNLO QCD corrections reduce the scale dependence significantly
- Reduction of scale unc. in the multiplicative approach
- In the LUXQED PDF set the total result deviates from the pure QCD one, especially after the 1 TeV region

13 TeV results

Outline

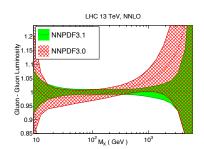
Differential distributions




- EW corrections are of the order of the theory unc. at high $P_{T,avt}$
- ullet At high regions the PDF unc. is larger than the scale unc. in $m(tar{t})$

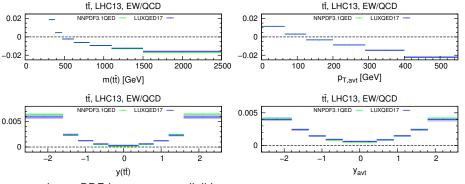
New PDF sets

LUXQED->LUXQED17,NNPDF30QED->NNPDF31luxQED


arXiv:1706.00428, arXiv:1712:07053

10² M_x (GeV)

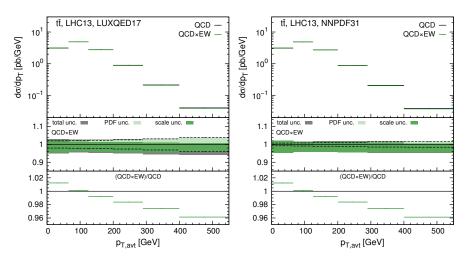
10³


- NNPDF3.1 adopts the LUXQED approach
- $\begin{tabular}{ll} $\gamma \gamma$ Luminosity in agreement between the two PDF sets \end{tabular}$
- In NNPDF3.1 the PDF uncertainties from the QCD part reduce

10

New PDF sets

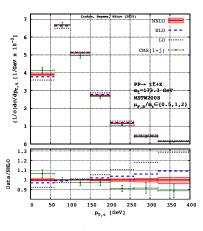
Outline

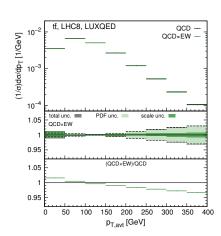

NNPDF3.1luxQED vs LUXQED17

- photon PDF impact → negligible
- LUXQED ←→ NNPDF3.1luxQED
- LUXQED17 and NNPDF3.1luxQED in agreement within uncertainties

New PDF sets

Recent results


- EW corrections not sensitive to the PDF choice
 - Reduction of PDF unc. in NNPDF3.1luxQED


Outline

Conclusions

- 13 TeV results
 - NNLO QCD are necessary in order to reduce the scale dependence
 - At 13 TeV, in p_T distributions EW corrections induce deviations w.r.t. the pure QCD ones (LUXQED(17), NNPDF3.1luxQED)
- PDF sets
 - NNPDF2.3(3.0)QED \rightarrow Large impact of photon-induced contributions accompanied with large uncertainties
 - CT14QED, LUXQED(17), NNPDF3.1luxQED ightarrow Negligible impact of photon-induced contributions in $t\bar{t}$ distributions
 - NNPDF3.1luxQED → Reduces the QCD uncertainty w.r.t. NNPDF3.0QED
- Recent results available to be compared with CMS data
 http://www.precision.hep.phy.cam.ac.uk/results/ttbar-nnloqcd-nloew

$P_T(t)$ spectrum \odot

Dynamical scale scale $\mu = m_T/2$

- Fixed scale $\mu = m_t$
- Only scale unc.

Scale+PDF unc.

Additional slides

FW Corrections ©

EW α renormalisation schemes

 \circ α (0)-scheme

Outline

- \rightarrow Pure QED \rightarrow Tomson scattering, m_e
- → Preferable for external photons
- $\alpha(m_Z)$ -scheme
 - \rightarrow Drell-Yan, m_7
 - \rightarrow Avoid $log \frac{m_Z^2}{m^2}$, $log \frac{m_Z^2}{m^2}$ terms
 - \rightarrow Still pure QED
- G_{μ} -scheme

- → Include FW effects
- \rightarrow Preferable for external W's

- Running of α effects
 - $\log \frac{m_Z^2}{m_0^2} \Leftrightarrow \log \frac{Q^2}{m_Z^2}$
 - $Q \sim 1.6 \times 10^4 \text{ TeV}$
 - → Not significant for LHC energies
- Scheme dependence
 - $\rightarrow \sim 3\%$ for $O(\alpha^3)$ perturbative order

Outline

Sudakov logarithms

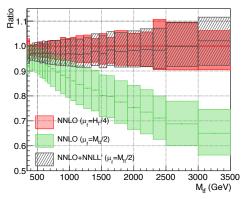
- The QED part of the EW corrections
 QCD corrections
- Weak virtual corrections are finite even without real contributions (massive vector bosons)
- The Sudakov logs are the IR limit of virtual 1-loop EW corrections

• $Q^2 \sim \hat{s}, \hat{t}, \hat{u}$. When $Q^2 \gg m_V^2, m_H^2$, EW corrections are dominated by Sudakov-like corrections

The photon PDF ①

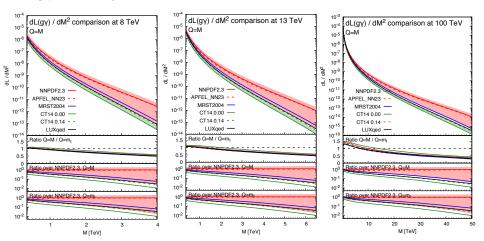
Outline

- NNPDF2.3QED
 - No assumption for the $\gamma(x, Q^0)$ functional form
 - Different scales for QCD/QED evolutions Splitting functions at $O(\alpha)$
- CT14QED
 - Uses an ansatz like MRST2004 with one free parameter
 - The momentum fraction carried by the photon is constrained to be $\leq 0.14\%$ at 90% CL
 - A set including the elastic photon contribution is also provided (CT14QEDinc)
- LUXQED
 - The QCD part is from PDF4LHC (CT14, MMHT14, NNPDF3.0)
 - Match the Master formula with the Parton model formula σo extract $\gamma(x,Q^0)$
 - Splitting functions at $O(\alpha + \alpha_s \alpha)$

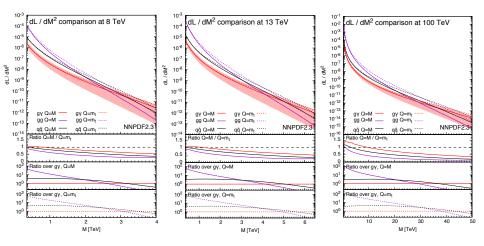

The photon PDF ①

Outline

- NNPDF3.0QED
 - Simultaneous evolution of QCD/QED is implemented (also in APFEL_NN23), which changes the low x behaviour, but with no effect in $t\bar{t}$ phenomenology
 - Splitting functions at $O(\alpha)$
- LUXQED17
 - Splitting functions at $O(\alpha + \alpha_s \alpha + \alpha^2)$
- NNPDF3.1luxQED (arXiv:1706.00428)
 - Adopts the LUXQED approach for the photon PDF
 - PDF unc. reduced from $\,$ 5% (NNPDF3.0) to $\,$ 1-2% for the range of $|y| \leq 2$ and $\,$ 100 GeV $\leq M_{\rm x} \leq 1$ TeV
 - Significant reduction of gluon uncertainty: combination of many mutually consistent constraints on the gluon from DIS (especially at HERA), Z transverse momentum distributions, jet production, and top pair production, which taken together cover a very wide kinematic range


Outline

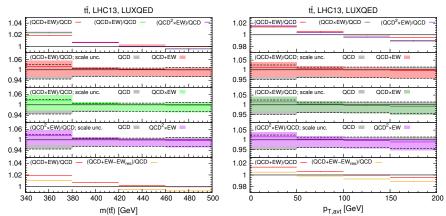
NNLO+NNLL' insensitive to the scale choice


arXiv:1803.07623

The $g\gamma$ Luminosity

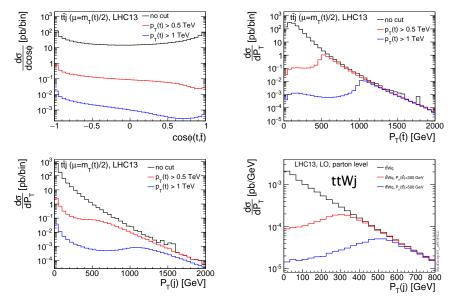
- LUXqed lies very close to CT14QED
- Effects due to the different evolution in NNPDF2.3QED are not visible

Parton Luminosities and scale choice

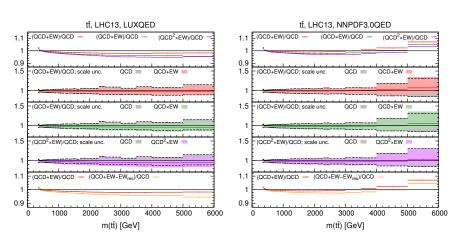


• In both dynamical and fixed scales the $g\gamma$ luminosity is suppressed with respect to the gg one at the low M region

Multiplicative approach ©

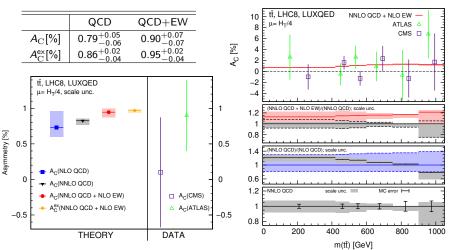

Outline

 Small QCD K-factors. Check the threshold regions, they are not driven by Sudakov logs, there should be no effect


• Check if the QCD corrections are driven by the soft part in the high p_T region. Look in $t\bar{t}i$. Show also $t\bar{t}Wi$ as a counter example

Multiplicative approach

Conclusions


Additive vs multiplicative combination

 \circ QCD + EW \sim QCD \times EW

Conclusions

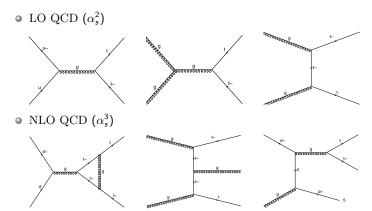
Outline

- Agreement with data at inclusive and differential level
- Theory unc. much smaller than the experimental one

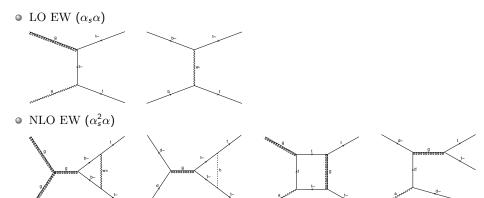
Conclusions

- NNLO QCD

Outline

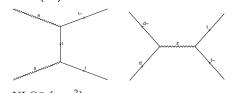

$$A_{C}^{\text{NNLO}} = \frac{\alpha_{s} N_{3} + \alpha_{s}^{2} N_{4}}{D_{2} + \alpha_{s} D_{3} + \alpha_{s}^{2} D_{4}} = \frac{\alpha_{s} N_{3}}{D_{2}} \left(1 + \frac{\alpha_{s} N_{4}}{N_{3}} \right) \left(1 + \frac{\alpha_{s} D_{3}}{D_{2}} + \frac{\alpha_{s}^{2} D_{4}}{D_{2}} \right)^{-1}$$

$$A_{C}^{\text{ex,NNLO}} = A_{C}^{\text{NNLO}} K^{\text{NNLO}} - A_{C}^{\text{NLO}} (K^{\text{NLO}} - 1) K^{\text{NLO}} + O(\alpha_{s}^{3})$$

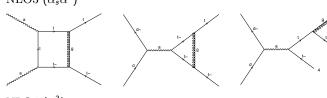

- NNLO QCD + NLO EW

$$\begin{split} A_C^{\text{NNLOQCD+EW}} &= \frac{\alpha_s N_3 + \alpha_s^2 N_4 + \alpha_s^{-2} N_{\text{EW}}}{D_2 + \alpha_s D_3 + \alpha_s^2 D_4} = \\ &= \left(\frac{\alpha_s N_3 + \alpha_s^2 N_4 + \alpha_s^{-2} N_{\text{EW}}}{D_2}\right) \left(1 + \frac{\alpha_s D_3}{D_2} + \frac{\alpha_s^2 D_4}{D_2}\right)^{-1} \\ A_C^{\text{ex,NNLOQCD+EW}} &= A_C^{\text{NNLOQCD+EW}} K^{\text{NNLO}} - A_C^{\text{NLO}} (K^{\text{NLO}} - 1) K^{\text{NLO}} + O(\alpha_s^3) \end{split}$$

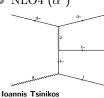
Representative Feynman diagrams (QCD)

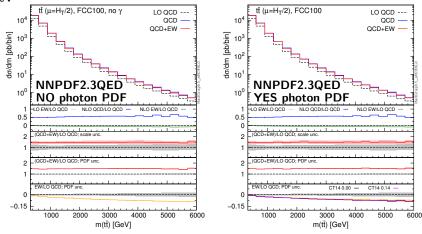


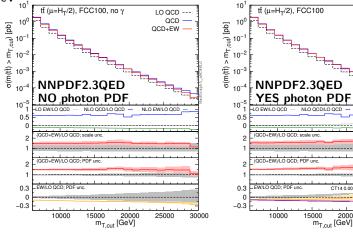
Representative Feynman diagrams (EW)



Outline


Representative Feynman diagrams (sub EW) \circ LO3 (α^2)




Precision calculations for top-quark pair production at the LHC

Outline

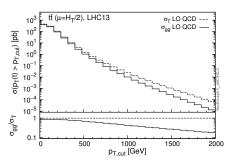
- ullet At 100 TeV $tar{t}$ differential distributions are not sensitive to photon-induced contributions
- $\sqrt{s} \uparrow \Longrightarrow \text{Bjorken } x'\text{s} \downarrow$

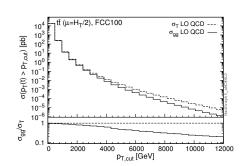
- The effect of the photon-induced contributions becomes visible only at very high $m(t\bar{t})$ (and $p_T(t)$) regions
- Larger effects are expected at 8 TeV, where already we have data

30000

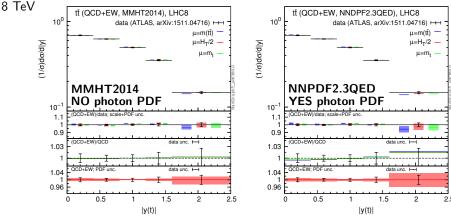
LO QCD --

QCD

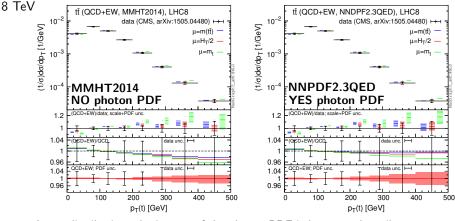

QCD+EW -


NLO EW/LO QCD

25000


20000

Outline



- Normalised $(1/\sigma)$ rapidity distributions \rightarrow Exp. errors reduce at few % level.
- Large PDF uncertainties and visible impact of photon PDF (NNPDF2.3QED)
- Can be used for constraining the photon PDF (NNPDF2.3QED)

Additional slides

- In p_T distributions the impact of the photon PDF is larger at the tail
- Sudakov logs vs $\gamma(x, Q)$ compensation depends on the scale definition
- For 13 TeV comparisons between theory and experiment EW corrections and photon-induced contributions need to be taken into account
- Scale uncertainty still large at NLO QCD \rightarrow NNLO QCD needed