

Studies of electroweak-penguin and other rare B decays at Belle

Luka Santelj, IPHC Strasbourg for the Belle Collaboration

Outline

- Introduction
- Recent studies of electroweak penguin B decays:

$$B \to K^* \gamma$$

$$B \to K^* l^+ l^-$$

$$B \to h^{(*)} \nu \nu$$

- Search for $B^- \to \mu^- \nu_\mu$
- Summary

Tsukuba, Japan

The Belle experiment

- Operating at the KEKB collider (1999-2010).
- Asymmetric beam energy:

$$8.0 \; \text{GeV} \; e^- \; \text{on} \; 3.5 \; \text{GeV} \; e^+$$

Boosted B meson pair produced in

$$e^- \longrightarrow \longleftarrow e^+ \Rightarrow \Upsilon(4S) \Rightarrow B\bar{B}$$

Collected about 772M BB pairs.

KEK B-Factory

NP in radiative and EW penguins

- FCNC processes: suppressed in the SM; only via loop and box diagrams

 High sensitivity to potential NP contributions in loops or new tree diagrams → enhancing/suppressing decay rates, inducing lepton flavor violation, affecting angular distributions, ...

NP in radiative and EW penguins

- Effective field theory description (NP model independend):

$$\mathcal{L}_{ ext{eff}} = rac{4G_F}{\sqrt{2}} V_{ts} V_{tb}^* \sum_i rac{ ext{left-hand}}{C_i \mathcal{O}_i} + rac{C_i' \mathcal{O}_i'}{C_i' \mathcal{O}_i'}$$

 \mathcal{C}_i - Wilson coefficients \rightarrow short distance

 \mathcal{O}_i - operator matrix elements \rightarrow long dist.

- radiative and EW penguins sensitive to $\mathcal{C}_7^{(,)}, \mathcal{O}_7 \sim (s_L \sigma^{\mu \nu} b_R) F_{\mu \nu}$

Photon penguin

 $\mathcal{C}_{9}^{(,)}, \mathcal{O}_{9} \sim (\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{l}\gamma^{\mu}l)$

EW vector

 $\mathcal{C}_{10}^{(,)}, \mathcal{O}_{10} \sim (\bar{s}_L \gamma_\mu b_L) (\bar{l} \gamma_5 \gamma^\mu l)$

EW axial-vector

- NP can contribute to $C_i o C_i^{SM} + C_i^{NP}$ $C_i' o C_i'^{SM} + C_i'^{NP}$

$$\left[\,\mathcal{C}_i^\prime
ightarrow \mathcal{C}_i^{\prime SM} + \mathcal{C}_i^{\prime NP}\,
ight]$$

 $\rightarrow m_s/m_b$ suppressed

- different observables sensitive to different combinations of $\,\mathcal{C}_i$'s
- → pinpoint NP contributions by measuring many observables
- → exploiting the power of global fits to see their "effective" nature

$[b \rightarrow s\gamma]$ Measurement of $\mathbf{B} \rightarrow \mathbf{K}^*\gamma$

- Theoretically the cleanest of exclusive $b \to s \gamma$ decay ($\mathcal{B} \sim 4 \times 10^{-5}$)
- Still large uncertainties arise from the form factors
- \rightarrow relatively weak constraints on NP from $\mathcal B$ measurements (compared to $\mathcal B(b \to X_s \gamma)$)
- Ratios of \mathcal{B} give theoretically and experimentally cleaner observables. In this analysis we measure (beside \mathcal{B}):

Isospin asymmetry

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

CP violation

$$A_{CP} = \frac{\Gamma(B \to K^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$$

Difference & average of CPV in isospin

$$\Delta A_{CP} = A_{CP}(B^+ \to K^{*+}\gamma) - A_{CP}(B^0 \to K^{*0}\gamma),$$
$$\bar{A}_{CP} = \frac{A_{CP}(B^+ \to K^{*+}\gamma) + A_{CP}(B^0 \to K^{*0}\gamma)}{2},$$

$b \to s \gamma$

Measurement of $\mathbf{B} \to \mathbf{K}^* \gamma$

- Reconstructed modes

$$K^* \to K_S^0 \pi^0, K^+ \pi^-, K^+ \pi^0, K_S^0 \pi^+$$

- Main backgrounds

$$ee \to q\bar{q} \to \text{NeuroBayes using event shape vars.}$$
 $B\bar{B} \to \pi^0, \eta \text{ veto } (m_{\gamma\gamma})$

- Simultaneous fit to m_{bc} distribution in 7 categories to extract B and asymmetries

Fit results

$$\mathcal{B}(B^{0} \to K^{*0}\gamma) = (3.96 \pm 0.07 \pm 0.14) \times 10^{-5},$$

$$\mathcal{B}(B^{+} \to K^{*+}\gamma) = (3.76 \pm 0.10 \pm 0.12) \times 10^{-5},$$

$$A_{CP}(B^{0} \to K^{*0}\gamma) = (-1.3 \pm 1.7 \pm 0.4)\%,$$

$$A_{CP}(B^{+} \to K^{*+}\gamma) = (+1.1 \pm 2.3 \pm 0.3)\%,$$

$$A_{CP}(B \to K^{*}\gamma) = (-0.4 \pm 1.4 \pm 0.3)\%,$$

$$\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%,$$

$$\Delta_{CP} = (+2.4 \pm 2.8 \pm 0.5)\%,$$

$$\bar{A}_{CP} = (-0.1 \pm 1.4 \pm 0.3)\%,$$

Measurement of $\mathbf{B} \to \mathbf{K}^* \gamma$

PRL 119, 191802 (2017)

arXiv:1707.00394

- comparison with previous measurements

- uncertainty systematics dominated

- Most precise to date
- Consistent with SM
- Strong constraints on $\operatorname{Im}(\mathcal{C}_7)$

First evidence of isospin violation in $b \rightarrow s$ 3.1σ

- great prospects for improving asymmetries precision at Belle II

$b \rightarrow sl^+l^-$ Measurement of $B \rightarrow K^*l^+l^-$

- ${\cal B}$ two orders of mag. lower than $b \to s \gamma$
- But additional degrees of freedom:
 - → Final state fully specified by 4 variables:

$$q^2=m_{ll}^2,\; heta_l,\; heta_K\; ext{and}\;\; \phi$$

- Measure the differential decay rate:

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\,\mathrm{d}\cos\theta_K \,\,\mathrm{d}\phi \,\,\mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \\ & + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \, \right], \end{split}$$

to determine the obsevables $F_L(q^2)$, $S_i(q^2)$

S. Descotes-Genon et al. JHEP 05 (2013) 137

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

Optimized obsevables, largely free of form factor uncertainties

$b \rightarrow sl^+l^-$ Measurement of $B \rightarrow K^*l^+l^-$

- LHCb finds 3.4 deviation from the SM value in P_5' ,

- \rightarrow NP in \mathcal{C}_9 ?!
- → or contribution from charm loops?

- Lepton flavor universality (LFU) observables theoretically much cleaner
 - → Notable deviations observed in

$$R_{\mathcal{K}} = rac{\mathrm{Br}(B
ightarrow \mathcal{K} \mu^+ \mu^-)}{\mathrm{Br}(B
ightarrow \mathcal{K} e^+ e^-)} \quad R_{\mathcal{K}^*} = rac{\mathrm{Br}(B
ightarrow \mathcal{K}^* \mu^+ \mu^-)}{\mathrm{Br}(B
ightarrow \mathcal{K}^* e^+ e^-)}$$

$$R_{\mathcal{K}^*} = rac{ ext{Br}(extit{B}
ightarrow extit{K}^* \mu^+ \mu^-)}{ ext{Br}(extit{B}
ightarrow extit{K}^* extit{e}^+ extit{e}^-)}$$

$b \rightarrow sl^+l^- | \mathbf{Measurement\ of\ B} \rightarrow \mathbf{K}^*l^+l^- |$

- We perform a test of LFU in angular observables, by measuring:

$$P_{4,5}^{\prime\mu}$$
 , $P_{4,5}^{\prime e}$ and $Q_{4,5}=P_{4,5}^{\prime e}-P_{4,5}^{\prime\mu}$

- reconstructed modes:

$$B^+ \to K^{*+}l^+l^-, \ K_S^{*+}\pi^+, K^+\pi^0$$

 $B^0 \to K^{*0}l^+l^-, \ K^{*0+}\pi^-$

- Fit m_{bc} distribution for the signal yield
- Due to small statistics the data folding technique is applied

(exploit the symmetries of trig.functions, to cancel terms of not primary intereset in diff. rate)

$b \to s l^+ l^-$

Measurement of $B \rightarrow K^*l^+l^-$

Phys. Rev. Lett. 118, 111801

arXiv:1704.05340

3

- Results compatible with the SM
- In the q^2 region of P_5' anomaly 2.5σ deviation from the SM is observed (driven by the muon final state, like in LHCb)
- Statisticaly limited \rightarrow Belle II (esp. Q_5)

0

 $C_{9\,\mu}^{\mathsf{NP}}$

-3

-2

RELIE

$b\to s\nu\nu$

Search for $\mathbf{B} \to \mathbf{h}^{(*)} \nu \nu$

- via Z^{0} penguin and WW box diagram
- sensitive to NP contributions in $\mathcal{C}_9, \mathcal{C}_{10}$
- no contribution from charm loops → theoretically very clean

- Event reconstruction:
 - $\rightarrow h^{(*)} = K^+, K_S^0, K^{*+}, K^{*0}, \pi^+, \pi^0, \rho^+, \rho^0$
 - → semi-leptonic tagging
 - ightarrow tag B reconstruced in $B
 ightarrow D^{(*)} l \nu$ using NeuroBayes
 - \rightarrow remaining particles used for $h^{(*)}$
- Signal extracted from extra energy in ECL

Phys. Rev. D 96, 091101,

arXiv:1702.03224

- Fit results

Channel	Observed signal yield	Significance
$K^+ uar{ u}$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$K_{ m S}^0 uar u$	$0.6 \pm 4.2 \pm 1.4$	0.0σ
$K^{*+}\nu\bar{\nu}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$K^{st0} uar u$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$\pi^+ uar u$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$\pi^0 uar u$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
$\rho^+\nu\bar\nu$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$\rho^0\nu\bar\nu$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

- upper limit on ${\cal B}(B\to K^{*0}\nu\nu)$ only factor 2 above the SM expected!
- Measurable at Belle II!

Worlds most stringent upper limits in several modes

${f B} \rightarrow \mu \nu$ untagged measurement

- Due to helicity suppression very rare

$$\mathcal{B}(B \to \tau \nu) \gg \mathcal{B}(B \to \mu \nu) \gg \mathcal{B}(B \to e \nu)$$

+ Good SM prediction → NP sensitive

$$\mathcal{B}^{SM}(B \to \mu\nu) = (3.8 \pm 0.31) \times 10^{-7}$$

- most stringent limit from BaBar: $\mathcal{B} < 1.0 \times 10^{-6}$ $_{\text{Phys. Rev. D79, 091101 (2009)}}$
- using un-tagged approach: all particles in event exept signal μ belong to the 2nd B.
- Neural network + p_{μ}^{*} to discriminate sig./bkg.
- Fit result

$$\mathcal{B}(B \to \mu\nu) = (6.46 \pm 2.22 \pm 1.6) \times 10^{-7}$$

2.4 σ excess above bkg level

$$\mathcal{B} \in [2.9, 10.7] \times 10^{-7} \mathrm{at}$$
 90% conf.

arXiv:1712.04123, submitted to PRL

Summary and prospects

- We presented results of some of the recent measurements of B decays sensitive to NP
- Measurements presented are consistent with the SM, as well as with the previous results. The largest deviation from the SM is at the level of 2.6 σ , in $q^2=4-8{\rm GeV}$ bin of P_5' for muon channel (consistent with the LHCb anomaly)
- The Belle physics program is very much alive and new results on this topics are expected for summer conferences ($R(K^{(*)})$, $B \to K^{(*)}ll'$, $B \to X_s\gamma$, $R(D^{(*)})$)
- On a longer term → expect great contributions from the Belle II experiment
 - → First collisions in the coming weeks!

$\mathbf{R}(\mathbf{D}^*)$ and τ polarization in $\mathbf{B} \to \mathbf{D}^{(*)} \tau \nu$

Phys. Rev. Lett. 118, 211801 arXiv:1612.00529

$$R(D^*) = 0.270 \pm 0.035^{+0.028}_{-0.025}$$
$$P_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$$

- consistent with the SM
- consistent with previous measurements

- combined with measurements from BaBar and LHCb $\sim 4\sigma$ discrepancy from the SM prdictions

$$\mathbf{B} \to \mathbf{K}^* \gamma$$

Using previous Belle measurement of

$$\mathcal{B}(B_S^0 o \phi \gamma)$$
 PRD 91 01101 (2015)

we obtain the ratio

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B^0_s \to \phi\gamma)} = 1.10 \pm 0.16 \pm 0.09 \pm 0.18$$

Systematic uncertainties

$$\mathcal{B}(B \to K^* \gamma)$$
 γ detection eff. -2.0%
 $\#$ of $B\bar{B}$ -1.4%
 π^0 detection eff. -1.3%
peaking bkg. yield $-1.1-1.6\%$

$$\Delta_{0+}$$
 $f_{+-}/f_{00} - 1.6\%$
PID - 0.38%

 A_{CP} Charged hadron det. asymmetry

$\mathbf{B} \to \mathbf{K}^* \mathbf{l}^+ \mathbf{l}^-$

q^2 in GeV^2/c^2	P_4'	$P_4^{e\prime}$	$P_4^{\mu\prime}$	P_5'	$P_5^{e\prime}$	P_5^{μ}
[1.00, 6.00]	$-0.45^{+0.23}_{-0.22} \pm 0.09$	$-0.72^{+0.40}_{-0.39} \pm 0.06$	$-0.22^{+0.35}_{-0.34} \pm 0.15$	$0.23^{+0.21}_{-0.22} \pm 0.07$	$-0.22^{+0.39}_{-0.41} \pm 0.03$	$0.43^{+0.26}_{-0.28} \pm 0.10$
[0.10, 4.00]	$0.11^{+0.32}_{-0.31} \pm 0.05$	$0.34^{+0.41}_{-0.45} \pm 0.11$	$-0.38^{+0.50}_{-0.48} \pm 0.12$		$0.51^{+0.39}_{-0.46} \pm 0.09$	$0.42^{+0.39}_{-0.39} \pm 0.14$
[4.00, 8.00]	$-0.34^{+0.18}_{-0.17} \pm 0.05$	$-0.52^{+0.24}_{-0.22} \pm 0.03$	$-0.07^{+0.32}_{-0.31} \pm 0.07$	$-0.30^{+0.19}_{-0.19} \pm 0.09$	$-0.52^{+0.28}_{-0.26} \pm 0.03$	$-0.03^{+0.31}_{-0.30} \pm 0.09$
[10.09, 12.90]	$-0.18^{+0.28}_{-0.27} \pm 0.06$	-	$-0.40^{+0.33}_{-0.29} \pm 0.09$	$-0.17^{+0.25}_{-0.25} \pm 0.01$	-	$0.09^{+0.29}_{-0.29} \pm 0.02$
[14.18, 19.00]	$-0.14^{+0.26}_{-0.26} \pm 0.05$	$-0.15^{+0.41}_{-0.40} \pm 0.04$	$-0.10^{+0.39}_{-0.39} \pm 0.07$	$-0.51^{+0.24}_{-0.22} \pm 0.01$	$-0.91^{+0.36}_{-0.30} \pm 0.03$	$-0.13^{+0.39}_{-0.35} \pm 0.06$