

Little is known about the strange sea

QCD analysis of the ATLAS and CMS W± and Z cross-section measurements and implications for the strange sea density arXiv:1803.00968

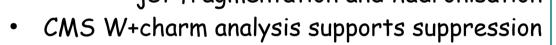
From my DIS14 talk ...

•

•

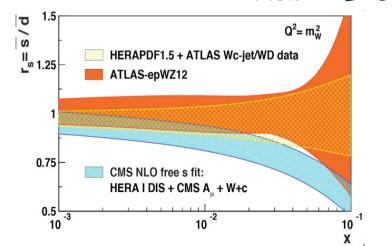
s, d

00000000


3

Motivation

- PDFs fits x~0.01 mainly constrained by HERA: light flavor guarks and antiguarks
- Flavor composition of total light sea not well determined by HERA data alone

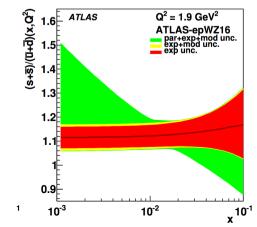

\rightarrow in particular little is known about strange sea

- This comes from di-muon production in neutrino induced deep inelastic scattering
 - sensitive to uncertainties from charm fragmentation and nuclear corrections
- Neutrino data suggest suppression of strange sea: sbar(x) = 0.5 dbar(x)
- At LHC W+c data give information on strangeness BUT involve assumptions on charm jet fragmentation and hadronisation

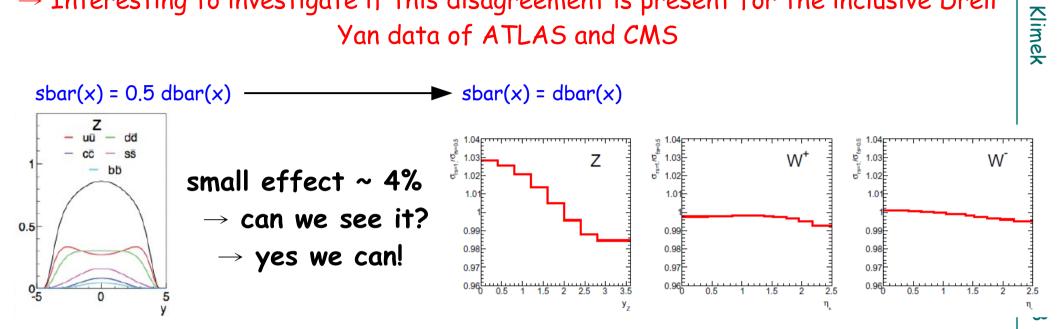
W

ATLAS W+charm analysis finds no suppression

s, d


0000000

q


С

С

New ATLAS inclusive W/Z production finds no suppression •

- Drell-Yan process and DIS are theoretically best understood processes
- \rightarrow Interesting to investigate if this disagreement is present for the inclusive Drell Yan data of ATLAS and CMS

<u>Main fit – CSKK – includes inclusive DY production</u>

CMSZ@7TeV

CMS Collaboration, JHEP 12 (2013) 030, [arXiv:1310.7291].

CMS W asymmetries @ 7 TeV

CMS Collaboration, Phys. Rev. D 90 (2014) 032004, [arXiv:1312.6283].

CMS W⁺⁻ cross sections @ 8 TeV

CMS Collaboration, Eur. Phys. J. C 76 (2016) 469, [arXiv:1603.01803].

ATLAS W and Z cross sections from one data sets - correlations ATLAS Collaboration, Eur. Phys. J. C 77 367 (2017), [arXiv:1612.03016]

 \rightarrow for all Z data we use only Z-mass-peak measurements

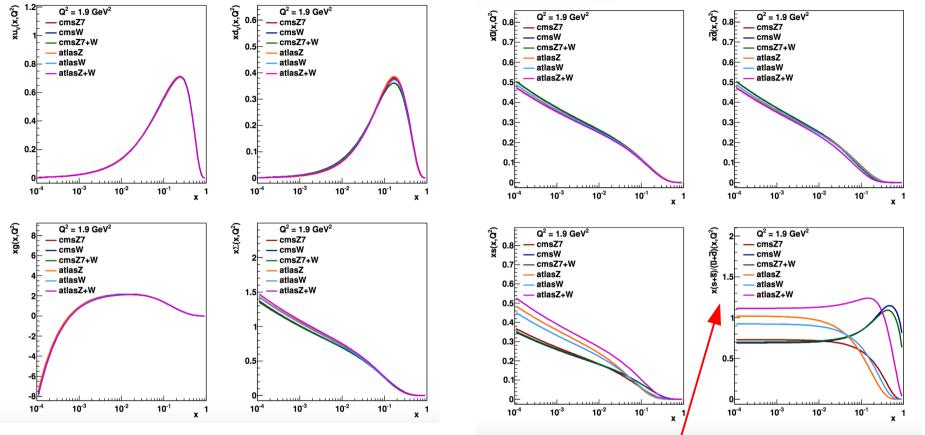
 \rightarrow off-peak Z data & CMS Z @ 8 TeV used as cross check

 $\overline{\mathbf{x}}$

QCD analysis

- QCD analysis at NNLO, following ATLAS paper, using xFitter + independent code
 - RTOPT, Q^2 of HERA data from 7.5 GeV²
 - K-factors, APPLGRID predictions
- Parameterisation: 15 free parameters, 2 for strange sea
 - Chosen after parameterisation scan

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ x\bar{u}(x) &= A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}, \end{aligned}$$
(22)


where $A_{\bar{u}} = A_{\bar{d}}$ and $B_{\bar{s}} = B_{\bar{d}} = B_{\bar{u}}$. Given the enhanced sensitivity to the strange-quark distribution through the ATLAS data, $A_{\bar{s}}$ and $C_{\bar{s}}$ appear as free parameters, assuming $s = \bar{s}$. The experimental data uncertainties are propagated to the extracted QCD fit parameters using the asymmetric Hessian method based on the iterative procedure of Ref. [128], which provides an estimate of the corresponding PDF uncertainties.

Klimek

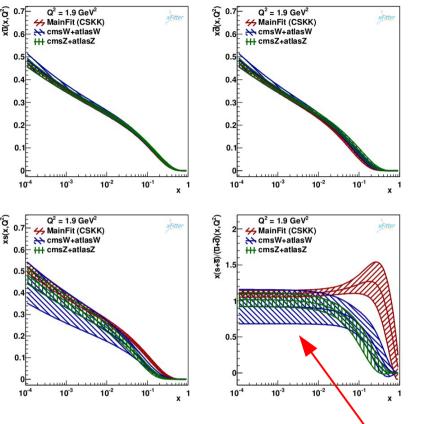
OxfordFitter

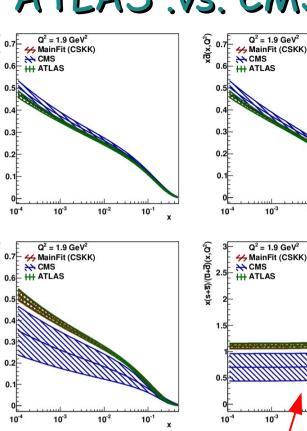
17.04.18 DIS18

Fits to CMS & ATLAS data separately

DIS18

This ratio is unity if strange quarks are not suppressed in relation to light quarks and is ~ 0.5 for the conventional level of suppression.


- Valence, gluon and total sea similar
- Break-up of sea sensitive to LHC data different for CMS and ATLAS
- at small x neither data support conventional level of suppression
- For x > 0.1 parameterisation uncertainties usually large


17.04.18

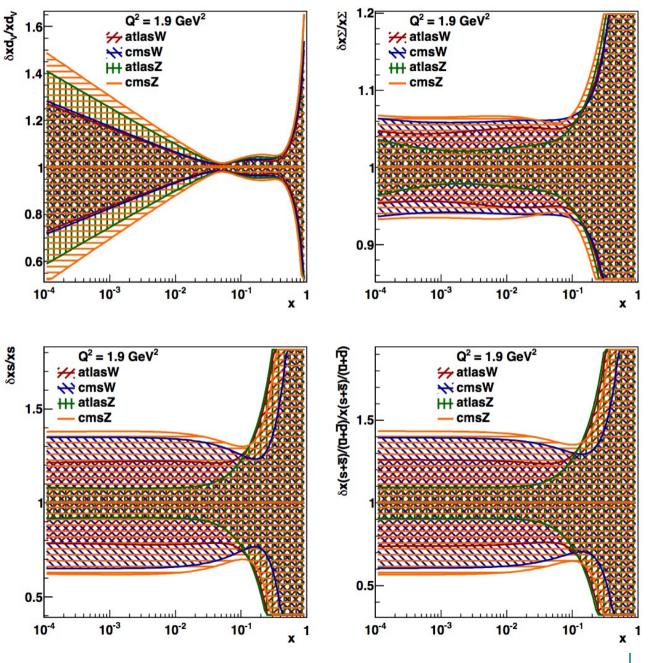
 $\overline{\mathbf{x}}$

W.vs.Z

ATLAS .vs. CMS

10⁻²

10-2

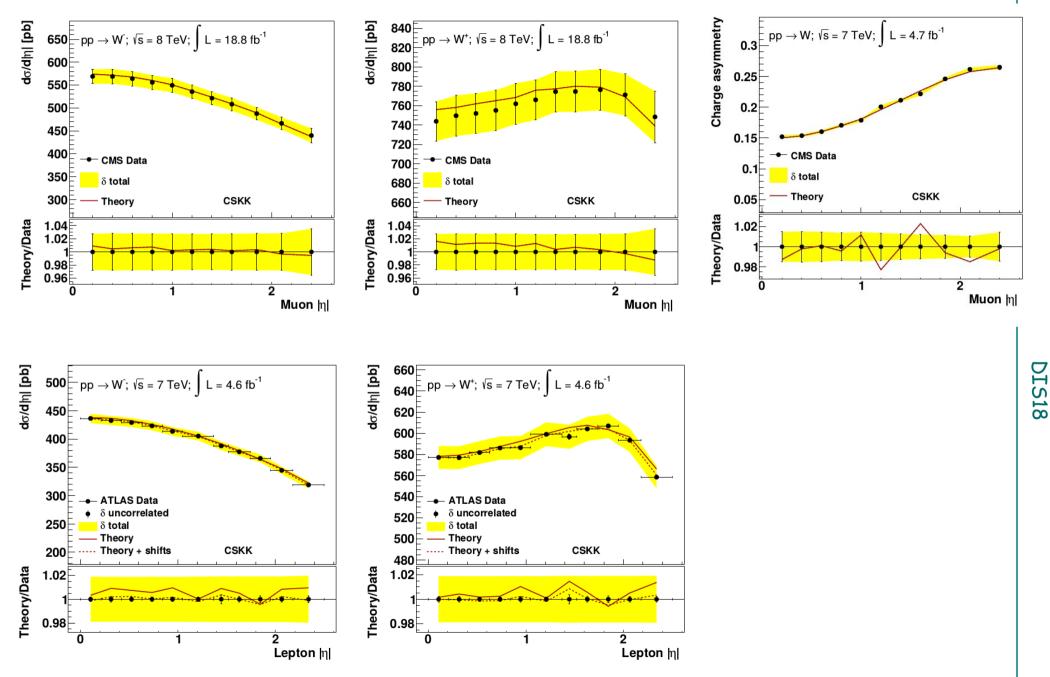

10⁻¹

10-1

- Experimental uncertainties
- Valence quarks, gluon and total sea similar
- Flavor break up of sea is similar at small x for W and Z data separately
 - Most information comes from Z data
 - For ATLAS correlations between Z and W important
- For $x \sim 0.01$ CMS ratio 1-2 sigma lower then ATLAS ratio
- However ALL configurations support unsuppressed strangeness > 0.5

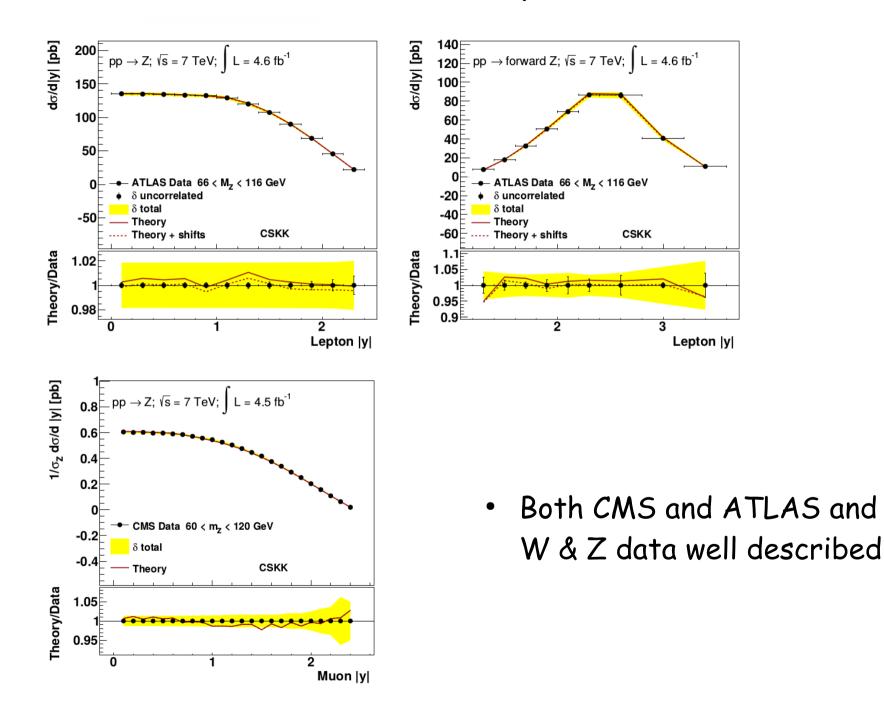
Constraining power of various datasets

- Valence quarks best constrained by both CMS and ATLAS W data
- For total sea Σ ATLAS Z most constraining
 - followed by ATLAS W,
 CMS W and CMS Z
- Same ordering seen for ubar and dbar and is most pronounced for s and R_s


17.04.18

Fit quality

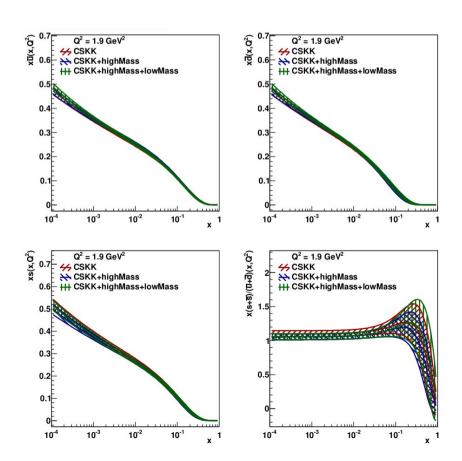
- Total and partial χ^2 s for W/Z data samples good
- ATLAS + CMS with central Z fit \rightarrow MainFit \rightarrow CSKK
- clear that greater accuracy of ATLAS data dominates CSKK fit
 - combined fit has unsuppressed strangeness
 - CMS data are not in tension with this result $\rightarrow \chi^2$ for CMS data is still very good


	ATLAS and CMS W	ATLAS and CMS Z	ATLAS and CMS					σ
			W and Z , CSKK fi					IS
Total χ^2/NDF	1265/1096 = 1.15	1244/1086 = 1.15	1308/1141 = 1.15			\mathbf{N}		18
Data set, χ^2/NDP						\mathbf{A}		0
HERA	1159/1056	1157/1056	1163/1056					
ATLAS W^+	12/11		13/11		CMS Z7	CMS W7,8	CMS Z7 + W	7,8
ATLAS W^-	8/11		9/11	Total χ^2/NDF	1218/1965	1225/1074	1236/1098	
ATLAS central CC Z		14/12	16/12	Data set, χ^2/NDP				
ATLAS central CF Z		9/9	7/9	HERA	1156/1056	1157/1056	1157/1056	,
CMS 7 TeV central Z		12/24	12/24	CMS 7 TeV central Z	11/24		11/24	ן ך
CMS 7 TeV W-asym.	13/11		14/11	CMS 7 TeV W-asymmetry		13/11	13/11	
CMS 8 TeV W^+, W^-	6/22		5/22	CMS 8 TeV W^+, W^-		4/22	4/22	

Data description: W

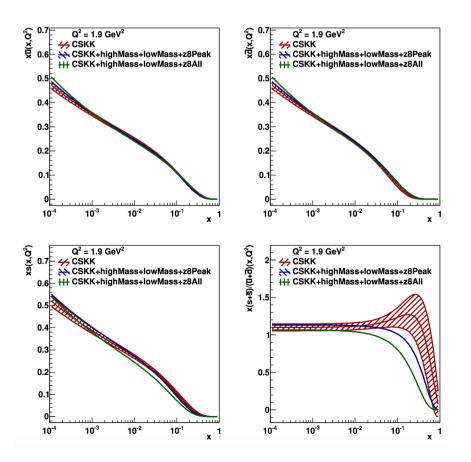
10

Data description: Z



11

Cross checks - adding more DY data

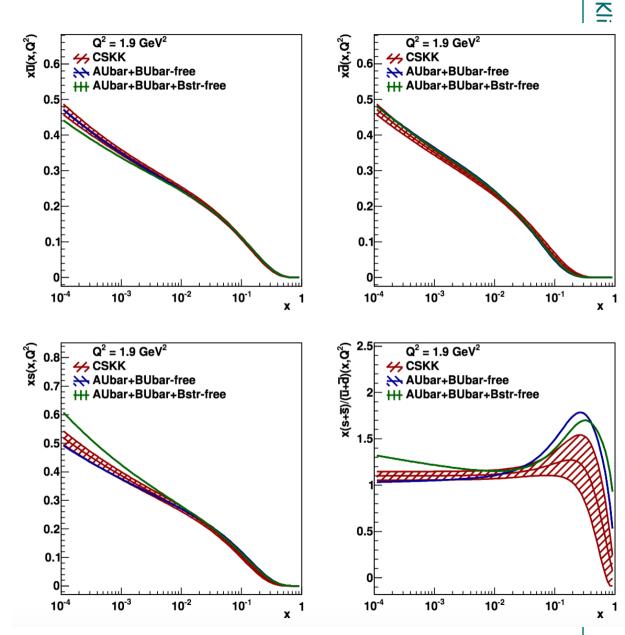

Adding off-peak Z 7 TeV data

- results not changed substantially
- experimental uncertainties are also not much reduced
- \rightarrow larger theoretical uncertainties, from electroweak effects and γ induced processes

\rightarrow Next CMS Z 8 TeV data added

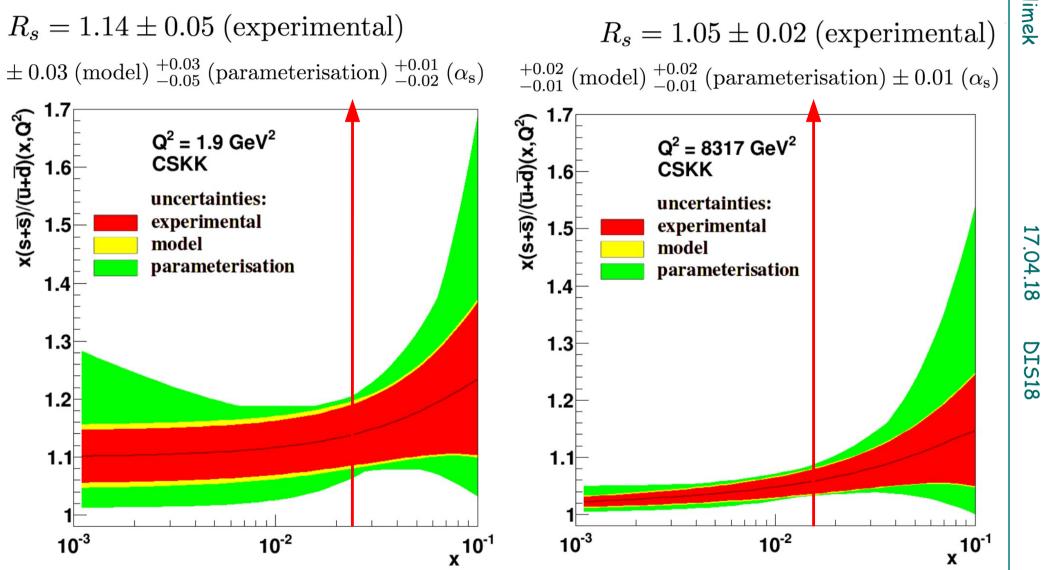
- result not changed substantially
 - Strangeness consistent
- In fact CMS 8 TeV Z-peak data favor even larger strangeness than CSKK for small x

Model and $\alpha_{_{\!\!\!\!S}}$ uncertainties


Variation	Total χ^2/NDF	$R_s = rac{s+ar{s}}{ar{d}+ar{u}}$			
		x = 0.023,	x = 0.013,		
		$Q_0^2=1.9~{\rm GeV^2}$	$Q_0^2=8317~{\rm GeV^2}$		
Nominal CSKK fit	1308 / 1141	1.14	1.05		
	Model variations				
$Q^2_{ m min}=5~{ m GeV^2}$	1375 / 1188	1.14	1.06		
$Q^2_{ m min}=10~{ m GeV^2}$	1251 / 1101	1.14	1.05		
$m_b = 4.25 \; \mathrm{GeV}$	1307 / 1141	1.12	1.04		
$m_b = 4.75 \; \mathrm{GeV}$	1310 / 1141	1.16	1.06		
$\mu_{f_0}^2 = 1.6~{ m GeV}^2$ and $m_c = 1.37~{ m GeV}$	1312 / 1141	1.16	1.06		
$\mu_{f_0}^2=2.2~{ m GeV}^2$ and $m_c=1.49~{ m GeV}$	1308 / 1141	1.12	1.05		
$\alpha_s(M_Z)$ variations					
$\alpha_s(M_Z) = 0.116$	1308 / 1141	1.12	1.04		
$lpha_s(M_Z)=0.117$	1308 / 1141	1.13	1.05		
$lpha_s(M_Z)=0.119$	1309 / 1141	1.14	1.06		
$\alpha_s(M_Z) = 0.120$	1310 / 1141	1.15	1.06		

Parameterisation uncertainty

Variation	Total χ^2/NDF	$R_s = rac{s+ar{s}}{ar{d}+ar{u}}$			
		x = 0.023,	x = 0.013,		
		$Q_0^2=1.9~{\rm GeV^2}$	$Q_0^2=8317~{\rm GeV^2}$		
Nominal CSKK fit	1308 / 1141	1.14	1.05		
Parameterisation variations					
$B_{ar{s}}$	1308 / 1140	1.12	1.05		
D_{u_v}	1308 / 1140	1.13	1.05		
D_{d_v}	1308 / 1140	1.14	1.05		
D_g	1306 / 1140	1.15	1.06		
$D_{ar{u}}$	1305 / 1140	1.15	1.06		
$D_{ar{d}}$	1302 / 1140	1.09	1.04		
E_{d_v}	1308 / 1140	1.14	1.05		
$A_{ar{u}}$ and $B_{ar{u}}$ free	1306 / 1139	1.17	1.07		
$A_{ar{u}}$ and $B_{ar{u}}$ and $B_{ar{s}}$ free	1306 / 1138	1.17	1.07		


Parameterisation study

- valence and gluon PDFs do not differ much
- low-x Dbar distribution consistent with Ubar for AUbar and BUbar free and for additional Bstr free
- strangeness ratio still consistent with unity for both

 $\overline{\mathbf{x}}$

CSKK: ratio

Total uncertainty dominated by parameterisation uncertainty for most of x range

 R_{c} consistent with unity at low x

 $\mathbf{\overline{\mathbf{x}}}$ Klimek

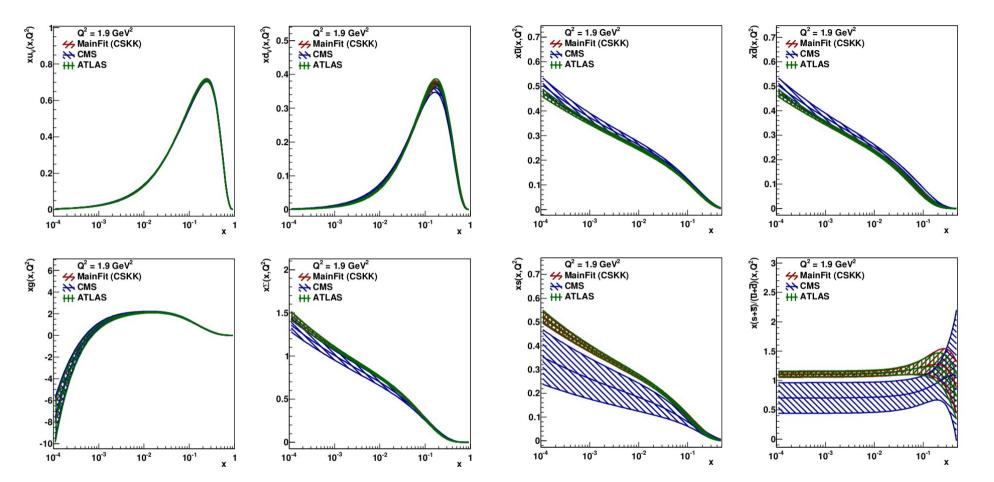
Additional parameterisation study


- For the CSKK fit, dbar-ubar at x~0.1 is negative, 2-3 sigma away from positive value suggested by E866 fixed-target Drell-Yan data
- Maybe if positive (dbar-ubar) imposed on the fit \rightarrow strangeness decreases \rightarrow larger dbar is correlated to smaller strangeness in the current parameterisation
 - However E866 observation made at x~0.1, whereas the LHC data have largest constraining power at x~0.01
- Cross-check made with a parameterisation which forces (dbar-ubar) to be in agreement with the E866 data
 - $R_s = 0.95 \pm 0.07$ (experimental) at x = 0.023 and $Q^2 = 1.9 \text{ GeV}^2$
 - Still consistent with unity, however \sim 2 sigma lower than central result
- not included in parameterisation variations \rightarrow not a good fit
 - X²/NDF of this fit is 1363/1141 compared to 1308/1141 for CSKK

- <u>We consider CSKK as our main fit</u>
 - HERA inclusive data + W data + Z peak data
- Our main conclusion about data sets
- \rightarrow There is no tension between the HERA data and the LHC data or between the LHC data sets
- We consider $R_s=rac{s+ar{s}}{ar{d}+ar{u}}$ distribution our main result
 - For comparison with ATLAS result we also calculate $R_{_{\rm s}}$ at certain x and Q^2 values
 - Results with experimental, model and parameterisation uncertainties

Buck-up slides

Fits to CMS & ATLAS data together

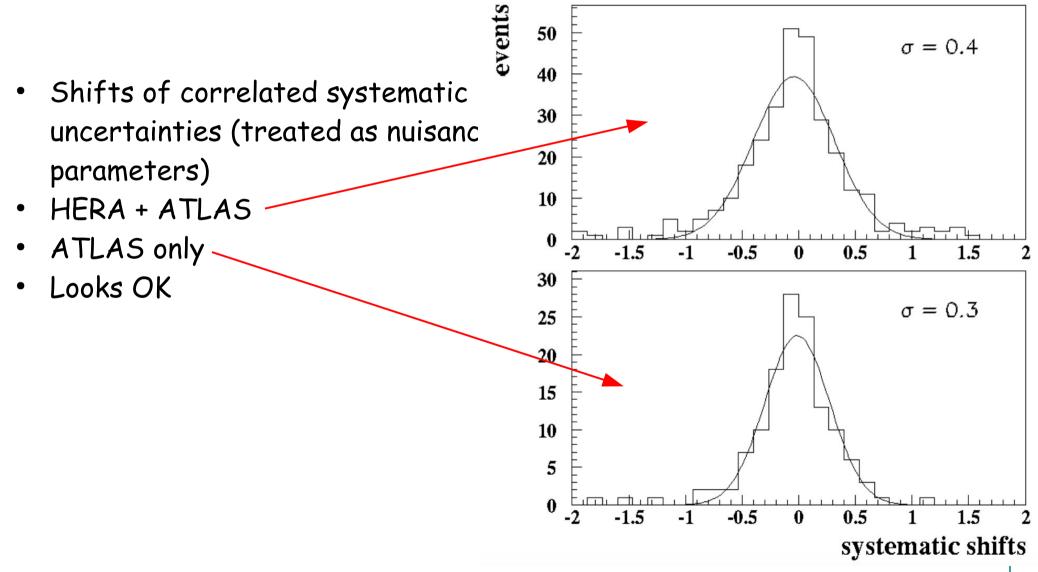

- Valence, gluon and total sea similar
- Flavor break up of sea is similar at small x for W and Z data separately
- Both data sets support unsuppressed strangeness
 - Most information comes from Z data
 - For ATLAS correlations between Z and W important
- For x > 0.1 parameterisation uncertainties become large

17.04.18

 $\overline{\mathbf{x}}$

Klimek

CMS vs ATLAS vs both



- Experimental uncertainties
- Valence, gluon and total sea are similar for PDFs from ATLAS and CMS data, small differences well within uncertainties
- Strange distributions differ
- For x ~ 0.01 CMS ratio 1-2 sigma lower then ATLAS ratio

17.04.18

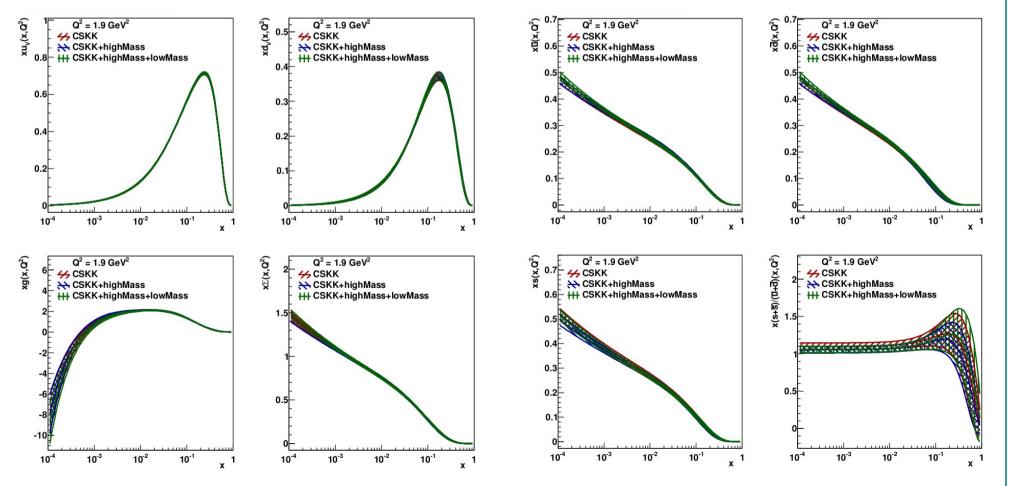
DIS18

Fit quality - shifts of systematic uncertainties

Hesse uncertainty .vs. MC replicas

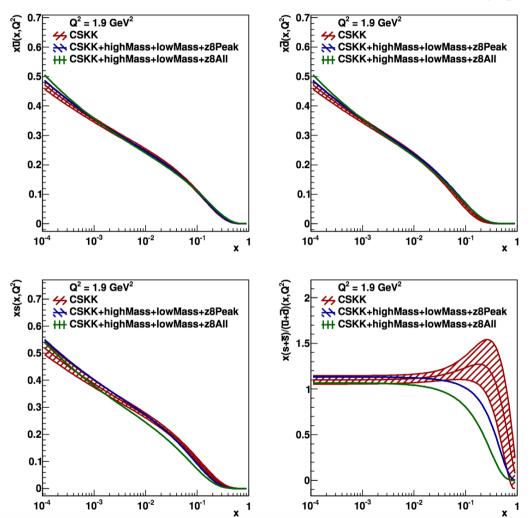
 $Q^2 = 1.9 \text{ GeV}^2$ δ**χυ_ν/χυ** $Q^2 = 1.9 \text{ GeV}^2$ bx/vbxc **CSKK MC replicas CSKK MC replicas CSKK** Hesse **CSKK Hesse** 1.05 0.9 0.95 0.8 10⁻³ 10⁻³ 10⁻² 10⁻¹ 10⁻² 10⁻¹ 10⁻⁴ 10-4 х x $Q^2 = 1.9 \text{ GeV}^2$ (<u>p+a)/(s+s)x/(p+a)/(s+s)x</u>($Q^2 = 1.9 \text{ GeV}^2$ **CSKK MC replicas CSKK MC replicas** ↔ CSKK Hesse **CSKK** Hesse 1.05 0.9 0.95 0.8 10⁻³ 10⁻² 10⁻³ 10⁻² 10⁻¹ 10⁻¹ 10-4 10х х

 $\overline{\mathbf{x}}$

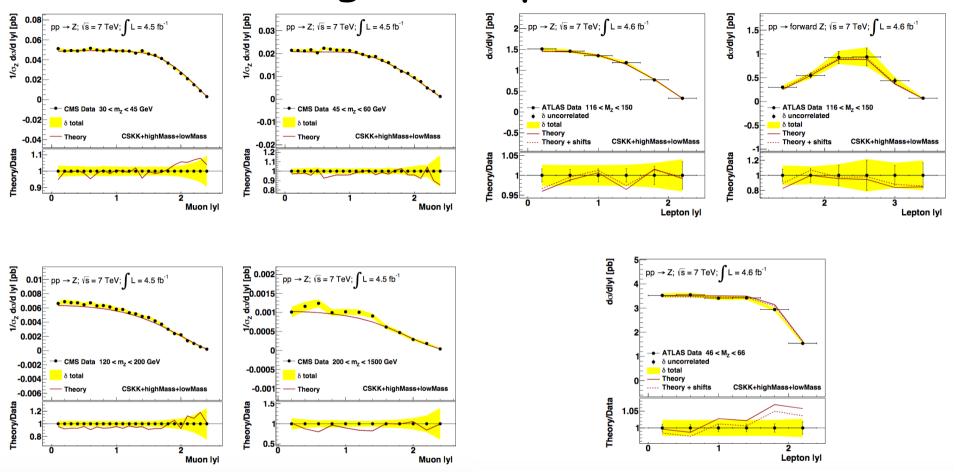

- Main method of experimental uncertainty estimation: Hesse
- Cross check done using MC replicas
- PDFs obtained with both methods agree well
- Uncertainties compatible §

17.04.18

DIS18


Adding Z off-peak data

- We added off-peak Z data \rightarrow high mass first and then low mass
- results not changed substantially
- experimental uncertainties are also not much reduced
 - \rightarrow larger theoretical uncertainties, from electroweak effects and photon induced processes \rightarrow MainFit CSKK contains peak data only



Adding CMS Z @ 8 TeV

- CMS Z @ 8 TeV peak data + low/high mass added
- These data also do not change the result substantially
 - Valence, gluon, sea very similar
 - Strangeness consistent
- In fact the CMS 8 TeV Z-peak data favor even larger strangeness than CSKK for small x

Adding Z off-peak data

- Not very good agreement for CMS off-peak data and ATLAS lowmass (seen in ATLAS analysis as well)
- There are larger theoretical uncertainties for off-peak mass regions coming from electroweak effects and photon induced processes
 we use only peak data for nominal CSKK fit

 $\overline{\mathbf{x}}$

Klimek

17.04.18

DIS18

CMS Z @ 8 TeV data

	ATLAS and CMS	W and all Z bins	CMS W and
	Z at 7 TeV	Z at 7 and 8 TeV	all Z bins
Total χ^2 /NDF	1481/1243 = 1.19	1814/1351 = 1.34	1596/1290 = 1.24
Data set, χ^2/NDP			
HERA	1163/1056	1178/1056	1186/1056
ATLAS W^+	13/11	12/11	
ATLAS W^-	9/11	15/11	
ATLAS central CC Z	15/12	26/12	
ATLAS central CF Z	7/9	8/9	
ATLAS CC Z, $116 < M_z < 150$ GeV	8/6	7/6	
ATLAS CF Z, $116 < M_z < 150$ GeV	4/6	4/6	
ATLAS CC Z, $46 < M_z < 66$ GeV	28/6	34/6	
CMS 7 TeV W-asym.	14/11	14/11	18/11
CMS 8 TeV W^+, W^-	5/22	7/22	5/22
CMS 7 TeV Z central	12/24	13/24	16/24
CMS 7 TeV Z, 120 $< M_z < 200~{\rm GeV}$	31/24	28/24	25/25
CMS 7 TeV $Z,200 < M_z < 1500~{\rm GeV}$	20/12	19/12	17/12
CMS 7 TeV Z, $30 < M_z < 45~{\rm GeV}$	35/24	35/24	36/24
CMS 7 TeV Z, $45 < M_z < 60$ GeV	22/24	20/24	20/24
CMS 8 TeV Z central		74/24	66/24
CMS 8 TeV Z, 120 < $M_z < 200~{\rm GeV}$		73/24	56/24
CMS 8 TeV $Z,200 < M_z < 1500~{\rm GeV}$		14/12	12/12
CMS 8 TeV $Z, 30 < M_z < 45~{\rm GeV}$		38/24	37/24
CMS 8 TeV Z, $45 < M_z < 60$ GeV		29/24	20/24

CMS Z @ 8 TeV are
 not well described

- Found by NNPDF too
 - some tension with ATLAS central mass & rapidity Z appears
 - not well fitted even when fitted together with just HERA and other CMS data

CSKK: ratio
$$R_s = rac{s+ar{s}}{ar{d}+ar{u}}$$

- R_s at x = 0.023 and Q^2 = 1.9 GeV²
 - Highest sensitivity at starting scale

 $R_s = 1.14 \pm 0.05 \text{ (experimental)} \pm 0.03 \text{ (model)} \stackrel{+0.03}{_{-0.05}} \text{ (parameterisation)} \stackrel{+0.01}{_{-0.02}} (\alpha_s)$

- R_s at x = 0.013 and $Q^2 = M_Z^2$
 - Maximal sensitivity for LHC data

 $R_s = 1.05 \pm 0.02 \text{ (experimental)} \stackrel{+0.02}{_{-0.01}} \text{ (model)} \stackrel{+0.02}{_{-0.01}} \text{ (parameterisation)} \pm 0.01 (\alpha_s)$

• Compared to ATLAS result at x = 0.023 and $Q^2 = 1.9 \text{ GeV}^2$

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}} = 1.13 \pm 0.05 \,(\text{exp}) \pm 0.02 \,(\text{mod}) \stackrel{+0.01}{_{-0.06}} \,(\text{par})$$