Electroweak Physics with the LHeC+FCCeh

Definitions Measurements + Simulations Couplings EFT + h.o. Studies

Daniel Britzger, Max Klein, Hubert Spiesberger For the LHeC Study Group

http://lhec.web.cern.ch

DIS2018, Kobe, 19.4.2018

Electroweak Physics Probing Nuclear Structure *) Deep Inelastic Scattering Testing the Electroweak Theory

$$\mathbf{F}_{2}^{\pm} = F_{2} + \kappa_{Z} (-v_{e}^{\prime} \mp Pa_{e}) \cdot F_{2}^{\gamma Z} + \kappa_{Z}^{2} (v_{e}^{2} + a_{e}^{2} \pm 2Pv_{e}a_{e}) \cdot F_{2}^{Z}$$

$$\mathbf{x} \mathbf{F}_{3}^{\pm} = \kappa_{Z} (\pm a_{e} + Pv_{e}^{\prime}) \cdot x F_{3}^{\gamma Z} + \kappa_{Z}^{2} (\mp 2v_{e}a_{e} - P(v_{e}^{2} + a_{e}^{2})) \cdot x F_{3}^{Z} .$$

$$\begin{split} \kappa_Z(Q^2) &= \frac{Q^2}{Q^2 + M_Z^2} \cdot \frac{1}{4\sin^2\Theta\cos^2\Theta} & v_f = i_f - e_f 2\sin^2\Theta & a_f = i_f \\ & \left(F_2, F_2^{\gamma Z}, F_2^Z\right) &= x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2)(q + \bar{q}) \\ & \left(xF_3^{\gamma Z}, xF_3^Z\right) &= 2x \sum (e_q a_q, v_q a_q)(q - \bar{q}), \end{split} \quad \boxed{\begin{array}{l} & \frac{e^2}{4\sqrt{2}} & \frac{2ev}{\sqrt{2}} \\ & \frac{1}{\sqrt{2}} & \frac{e^2}{\sqrt{2}} & \frac{2ev}{\sqrt{2}} \\ & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ & \frac{1}{\sqrt{2}} &$$

d 1/9

2/9

NC: yy, yZ, ZZ. Lepton beam helicity P, M_z , v and a couplings, PV through va CC: pure weak cross section (G_F , M_W) \rightarrow 3 independent variables, DIS: OMS

*) M. Klein and T. Riemann¹

Institut für Hochenergiephysik der AdW der DDR, DDR-1615 Berlin-Zeuthen

Received 19 October 1983 Z. Phys. C - Particles and Fields 24, 151-155 (1984)

Reduced NC e⁻p Scattering Cross Section [P=-0.9, 10fb⁻¹]

At small Q^2 , $\sigma_r = F_2$

10⁶

10⁶

Both at x=0.2 (the point of Bj scaling) and at larger x (the region of gluon bremsstrahlung which makes F₂ decrease with Q^2), the reduced NC cross section rises

Polarisation Asymmetry and R=NC/CC

$$\frac{2}{P_L - P_R} \cdot A^{\pm} \simeq \mp \kappa_Z a_e \frac{F_2^{\gamma Z}}{(F_2 + \kappa_Z a_e Y_- x F_3^{\gamma Z} / Y_+)} \simeq \mp \kappa_Z a_e \frac{F_2^{\gamma Z}}{F_2}$$

$$\frac{2}{P_L - P_R} \cdot A^{\pm} \simeq \pm \kappa \frac{1 + d_v / u_v}{4 + d_v / u_v}.$$
Classic asymmetry (Prescott et al, 1978)
accesses weak interaction, $F_2^{\gamma Z}$ is a new,
direct measure of valence quarks at high x

$$\begin{split} R^{\pm} &= \frac{\sigma_{NC}^{\pm}}{\sigma_{CC}^{\pm}} = \frac{2}{(1\pm P)\kappa_W^2} \cdot \frac{\sigma_{r,NC}^{\pm}}{\sigma_{r,CC}^{\pm}} & \text{R ac} \\ & \text{and} \\ R^{\pm} &\simeq \frac{2a_e^2}{(1\pm P)\cos^2\Theta} \cdot \frac{Y_+F_2^Z-Y_-PxF_3^Z}{Y_+W_2^\pm+Y_-xW_3^\pm} & \text{functions} \end{split}$$

R accesses weak interaction and the pure weak structure functions which are best measured at the LHeC/FCC-eh

Note that in experiment you would measure the cross sections and determine all correlations which is still more informative than A or R but contains their physics.

PV Asymmetry in NC

HERA: 20% asymmetry at $Q^2 = 10^4 \text{ GeV}^2$ A⁺ = - A⁻

FCCeh: 40% integrated asymmetry for $Q^2 > 10^4 \text{ GeV}^2$, locally (x) much larger

Parity Violation Structure Function $F_2^{yZ} = x \Sigma 2 e_q v_q (q + \bar{q})$

LHeC: 7 TeV, FCC-eh: 50 TeV, E_e =60 GeV, integrated L of 100 fb⁻¹ for P= +- 0.8

H1: arXiv:1207.7007: much smaller x and Q² range, imprecise, but first measurement ever

Charged Currents

$$\frac{d^2 \sigma^{\rm CC}(e^{\pm} p)}{dx dQ^2} = (1 \pm P_e) \frac{G_{\rm F}^2}{4\pi x} \left[\frac{m_W^2}{m_W^2 + Q^2} \right]^2 \left(Y_+ W_2^{\pm}(x, Q^2) \mp Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) + Y_- x W_3^{\pm}(x, Q^2) \right)^2 \right)^2 + \frac{1}{2} \left(Y_+ W_2^{\pm}(x, Q^2) \right)^2 \right)^2 \right)^2$$

$$W_2^- = x\left(U + \overline{D}\right), \quad xW_3^- = x\left(U - \overline{D}\right)$$
$$W_2^+ = x\left(\overline{U} + D\right), \quad xW_3^+ = x\left(D - \overline{U}\right)$$

Data sets:

 $1ab^{-1}P=-0.8$ to enlarge rate for WW \rightarrow H

0.3ab⁻¹ P=+0.8 for eweak physics

0.1ab⁻¹ unpolarised with positrons

Data (NC,CC) Simulation for QCD + el.weak Evaluation

Numerical treatment of correlated and uncorrelated systematic and statistical errors [based on PHE-1990-02 (J.Blümlein, M.Klein), cross checked with H1 Monte Carlo]

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E'_e/E'_e$	0.1~%
scattered electron polar angle	$0.1\mathrm{mrad}$
hadronic energy scale $\Delta E_h/E_h$	0.5%
calorimeter noise (only $y < 0.01$)	1-3%
radiative corrections	0.5%
photoproduction background (only $y > 0.5$)	1 %
global efficiency error	0.7%

- Assumptions gauged with H1, probably conservative.
- This approach determines full set of uncorrelated and correlated uncertainties
- ALL PDFs and electroweak fit results presented to this workshop have full systematic error
- This also holds for the LHeC CDR alphas analysis leading to 0.1-0.2% total uncertainty

NC Cross Section Correlated Uncertainties (Q²=20000 GeV²)

Figure 3.3: Neutral current cross section errors, calculated for $60 \times 7000 \,\text{GeV}^2$ unpolarised e^-p scattering, resulting from scale uncertainties of the scattered electron energy $\delta E'_e/E'_e = 0.1 \,\%$, of its polar angle $\delta \theta_e = 0.1 \,\text{mrad}$ and the hadronic final state energy $\delta E_h/E_h = 0.5 \,\%$, at large $Q^2 = 20000 \,\text{GeV}^2$ and correspondingly large x. Note that the characteristic behaviour of the relative uncertainty at large x, i.e. to diverge $\propto 1/(1-x)$, is independent of Q^2 , i.e. persistently observed at $Q^2 = 20000 \,\text{GeV}^2$ for example too.

From LHeC CDR

NC Cross Section Correlated Uncertainties (Q²=2 GeV²)

Figure 3.2: Neutral current cross section errors, calculated for $60 \times 7000 \,\text{GeV}^2$, resulting from scale uncertainties of the scattered electron energy $\delta E'_e/E'_e = 0.1$ %, of its polar angle $\delta \theta_e = 0.1 \,\text{mrad}$ and the hadronic final state energy $\delta E_h/E_h = 0.5$ %, at low $Q^2 = 2 \,\text{GeV}^2$ and correspondingly low x.

From LHeC CDR

Framework and Definitions

PDF+EW-fit

- PDF fit in NNLO precision
 - ZM-VFNS using QCDNUM
 - 13 free PDF parameters

EW calculations

- 1-loop EW corrections
- On-shell parameters are: $(\alpha_{em}, m_z, m_w, \Delta r)$ with $\Delta r = \Delta r(\alpha_{em}, m_w, m_z, m_t, m_H, ...)$

MSbar: Spiesberger/Dittmaier, in preparation

- m_t and m_H enter through loop-corrections (Δr)
- $sin^2\theta_w$ and g_f are calculated quantities
- More general, also <u>vector</u> and <u>axial-vector</u> <u>couplings</u> are 'free' parameters

$$g_A^q = \sqrt{\rho_{\text{NC},q}} I_{\text{L},q}^3,$$

$$g_V^q = \sqrt{\rho_{\text{NC},q}} \left(I_{\text{L},q}^3 - 2Q_q \kappa_{\text{NC},q} \sin^2 \theta_W \right)$$

$$W_2^- = x \left(\rho_{\text{CC},eq}^2 U + \rho_{\text{CC},e\bar{q}}^2 \overline{D} \right), \quad xW_3^- = x \left(\rho_{\text{CC},eq}^2 U - \rho_{\text{CC},e\bar{q}}^2 \overline{D} \right)$$

$$W_2^+ = x \left(\rho_{\text{CC},eq}^2 \overline{U} + \rho_{\text{CC},e\bar{q}}^2 D \right), \quad xW_3^+ = x \left(\rho_{\text{CC},e\bar{q}}^2 D - \rho_{\text{CC},e\bar{q}}^2 \overline{U} \right)$$

cf H1 to be published, Z Zhang this conference

New: parameterise effective h.o. corrections as deviations ρ' and κ'

 $\rho'_{\rm NC} \rightarrow \rho'_{\rm NC} \rho_{\rm NC}$ $\kappa'_{\rm NC} \rightarrow \kappa'_{\rm NC} \kappa_{\rm NC}$ $\rho'_{\rm CC} \rightarrow \rho'_{\rm CC} \rho_{\rm CC}$

W.Hollik, CERN-TH.5547/1989

W,Z, top [loop] Masses [from inclusive data only] at LHeC/FCCeh

with LHeC PDFs (S Camarda)

MZ similar. H and t from loops for consistency measurable directly with much better accuracy.

Masses from inclusive NC+CC Cross Sections

Parameter	HERA	LHeC	FCC-eh
Δm_W [MeV]	±63 _(exp) 29 _(pdf)	$\pm 14_{(exp)}10_{(pdf)}$	$\pm 9_{(exp)}4_{(pdf)}$
Δm_Z [MeV]	$\pm 56_{(exp)}25_{(pdf)}$	$\pm 16_{(exp)}10_{(pdf)}$	$\pm 16_{(exp)} 10_{(pdf)}$
Δm_t [GeV]	$\pm 10_{(exp)}5_{(pdf)}$	$\pm 2.6_{(exp)}1.7_{(pdf)}$	$\pm 1.7_{(exp)}0.5_{(pdf)}$
Δm_H [GeV]	$> O(100 \mathrm{GeV})$	$\pm 31_{(exp)}22_{(pdf)}$	$\pm 20_{(exp)}4_{(pdf)}$

Table 4: Summary of electroweak parameters from HERA-II data and LHeC and FCC-ep simulated data.

OMS: W,Z direct. top. Higgs through loops

1987 expected 100 MeV for MW [JB, MK, TR] at HERA

Light up Quark NC Couplings

Light down Quark NC Couplings

First preliminary Global Electroweak Analysis FCC ee+eh

J de Blas (Amsterdam FCC week)

FCC-eh (and LHeC) has much more information to provide than up + down NC couplings. -We can measure the interference parts of F_2^{cc} and $F_2^{bb} \rightarrow$ get v and a couplings for c,b -Scale dependence of $\sin^2\Theta_w(Q)$ for Q ~ 300 MeV (PERLE) to 1 TeV (LHeC), 3 TeV (FCCeh) [low scales: elastic lepton-nucleon scattering MK T Riemann, Z Phys C8 (81) 239: Jlab, MESA]

Charm F_2^{cc} and Mass

 ϵ (c) assumed 10%, 1% light background, ~3% δ (syst)

Heavy Flavour with LHeC

Beam spot (in xy): 7μ m Impact parameter: better than 10μ m Modern Silicon detectors, no pile-up Higher E, L, Acceptance, ε , than at HERA \rightarrow Huge improvements predicted

	HERA	LHeC
m _c (m _c)/GeV	1.26	?
δ(exp)	0.05	0.003
δ(mod)	0.03	~0.002
δ(par)	0.02	~0.002
δ(α _s)	0.02	0.001

LHeC determines strong coupling to 0.1% High precision PDF data will reduce the mod and par errors by a very large amount.

Determination of charm mass to 3 MeV: crucial for M_W in pp or $H \rightarrow cc$ in ep cf also NNPDF3.1 (arXiv:1706.00428) and refs

First preliminary Global Electroweak Analysis FCC ee+eh

Combination of ee and ep; Test of SM to O(20) TeV; a Model also for LHeC + e⁺e⁻ wherever

$$\mathcal{L}_{\rm NC} = -\frac{e}{sc} (1 + \delta^U g_{\rm NC}) Z_{\mu} \sum_{\psi} \overline{\psi^i} \gamma^{\mu} \Big[\Big(g_L^{\psi} \delta_{ij} + (\delta^D g_L^{\psi})_{ij} \Big) P_L + \Big(g_R^{\psi} \delta_{ij} + (\delta^D g_R^{\psi})_{ij} \Big) P_R + \delta^Q g_{\rm NC} \delta_{ij} \Big] \psi^{\psi} \mathcal{O}_{\phi f}^{(1)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{f} \gamma^{\mu} f) \qquad \mathcal{O}_{\phi f}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{a} \phi) (\overline{f} \gamma^{\mu} \sigma_a f) \qquad \dots \qquad \text{J De Blas}$$

Definitions of ρ' and $\kappa's$

Neutral current

Universal higher-order corrections are be taken into account by Q^2 -dependent form factors $\rho_{\rm NC}$ and $\kappa_{\rm NC}$. Many extensions of the Standard Model predict modifications of the weak neutralcurrent couplings. These can be described conveniently by introducing additional parameters $\rho'_{\rm NC}$ and $\kappa'_{\rm NC}$, which can be also considerd to be Q^2 dependent:

$$g_A^f = \sqrt{\rho_{\text{NC},f} \rho_{\text{NC},f}'} I_{\text{L},f}^3, \qquad (1)$$

$$g_V^f = \sqrt{\rho_{\text{NC},f} \rho_{\text{NC},f}'} \left(I_{\text{L},f}^3 - 2Q_f \kappa_{\text{NC},f} \kappa_{\text{NC},f}' \sin^2 \theta_W \right) \,. \tag{2}$$

The estimated relative uncertainties of the ρ'_{NC} or κ'_{NC} achieved with the LHeC or FCC-eh data, can also be interpreted as the relative uncertainty of a direct determination of the ρ_{NC} parameters or $\sin^2 \theta_w^{\text{eff}}$.

Charged current

Higher-order EW corrections to the CC cross sections are collected in form factors $\rho_{CC,eq/e\bar{q}}$. Similarly as for NC, modifications of the SM formalism can be expressed by introducing the additional ρ'_{CC} parameters:

$$W_2^- = x \left((\rho_{\text{CC},eq} \rho_{\text{CC},eq}')^2 U + (\rho_{\text{CC},e\bar{q}} \rho_{\text{CC},e\bar{q}}')^2 \overline{D} \right), \tag{3}$$

$$xW_3^- = x\left((\rho_{\mathrm{CC},eq}\rho_{\mathrm{CC},eq}')^2 U - (\rho_{\mathrm{CC},e\bar{q}}\rho_{\mathrm{CC},e\bar{q}}')^2 \overline{D}\right),\tag{4}$$

$$W_2^+ = x \left((\rho_{\text{CC},eq} \rho_{\text{CC},eq}')^2 \overline{U} + \rho_{\text{CC},e\bar{q}} \rho_{\text{CC},e\bar{q}}')^2 D \right),$$
(5)

$$xW_3^+ = x\left((\rho_{\mathrm{CC},e\bar{q}}\rho_{\mathrm{CC},e\bar{q}}')^2 D - \rho_{\mathrm{CC},eq}\rho_{\mathrm{CC},eq}')^2 \overline{U}\right). \tag{6}$$

Test of eweak SM in NC to permille level. κ uncertainty describes sin² θ sensitivity.

Test of eweak theory in space like configuration. Precision vs scale $\mu=VQ^2$

Test of eweak SM in CC to few permille level. Quark-Antiquark distinction. Note that CC at H1 is large x dominated \rightarrow reduced sensitivity to eqbar Test of eweak theory in space like configuration. Precision vs scale μ =VQ²

Summary

Study of electroweak effects in NC and CC inclusive cross sections performed. Full consideration of experimental, syst+stat uncertainties [as in α_{c} analysis]. Joint QCD (PDF) and electroweak analysis. PDFs do not dominate eweak tests. $s=Q_{max}^2 = 4E_eE_p = 1.7 \text{ TeV}^2$ (LHeC) and 12 TeV² >> $M_{W,Z}^2$. Very large luminosity \rightarrow High precision measurements \rightarrow New laboratory for testing EW SM at new scales. Initial determination of light quark couplings done, to 1% precision. Novel parameterisation of h.o. effects in NC and CC couplings, including $\sin^2\theta$. Measurement of scale dependence with unique and unprecedented precision. First joint EFT and coupling fit analysis done for future ee and ep colliders (FCC). Next: Formulation of DIS in MSbar, Tests for c,b (e) couplings. LHeC & e⁺e⁻, ...

backup

PDFs and their effect on electroweak physics

FCC-eh and LHeC:Input: high precision (stat+syst) data on Neutral Current (x: 10⁻⁶-1; Q²:1-10⁶) Charged Current (10⁻⁴-1; 100-10⁶) Tagging of Charm and Beauty with high precision and coverage. ep (eD)

Completely new PDF Programme

Determine ALL pdfs in a coherent way + the strong coupling to 0.1% accuracy No higher twists, no nuclear corrections, no symmetry assumptions, N³LO

 \rightarrow ubar, uv, dbar, dv, s, c, b, t, xg and alpha_s

This essentially removes the PDF uncertainties on the electroweak variables, in ep but as well for pp.

For the Higgs this means that ep can turn pp into a precision Higgs facility

Definitions (J De Blas, Amsterdam FCC week)

EWPO sensitive to modifications of NC couplings

$$\mathcal{L}_{\rm NC} = -\frac{e}{sc} \big(1 + \delta^U g_{\rm NC}\big) Z_{\mu} \sum_{\psi} \overline{\psi^i} \gamma^{\mu} \Big[\Big(g_L^{\psi} \delta_{ij} + (\delta^D g_L^{\psi})_{ij} \Big) P_L + \Big(g_R^{\psi} \delta_{ij} + (\delta^D g_R^{\psi})_{ij} \Big) P_R + \delta^Q g_{\rm NC} \delta_{ij} \Big] \psi^j$$

Flavor non-universal contributions

$$\begin{split} \delta^D g_L^{\stackrel{\nu}{e}} &= -\frac{1}{2} \left(C_{\phi l}^{(1)} \mp C_{\phi l}^{(3)} \right) \frac{v^2}{\Lambda^2}, \qquad \delta^D g_R^e = -\frac{1}{2} C_{\phi e}^{(1)} \frac{v^2}{\Lambda^2} \\ \delta^D g_L^{\stackrel{u}{d}} &= -\frac{1}{2} \left(C_{\phi q}^{(1)} \mp C_{\phi q}^{(3)} \right) \frac{v^2}{\Lambda^2}, \qquad \delta^D g_R^{\stackrel{u}{d}} = -\frac{1}{4} C_{\phi d}^{(1)} \frac{v^2}{\Lambda^2} \end{split}$$

Flavor-universal contributions

 $\delta^U g_{
m NC} = -rac{1}{2} \left[\Delta_{G_F} + rac{C_{\phi D}}{2}
ight] rac{v^2}{\Lambda^2}$

 $\delta^Q g_{
m NC} = -Q \left(rac{sc}{c^2 - s^2} C_{\phi WB} + rac{s^2 c^2}{c^2 - s^2} \left[\Delta_{G_F} + rac{C_{\phi D}}{2}
ight]
ight) rac{v^2}{\Lambda^2}$

10 Operators

$$egin{aligned} \mathcal{O}_{\phi f}^{(1)} &= (\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (\overline{f} \gamma^\mu f) \ \mathcal{O}_{\phi f}^{(3)} &= (\phi^\dagger i \overleftrightarrow{D}_\mu^a \phi) (\overline{f} \gamma^\mu \sigma_a f) \end{aligned}$$

$$egin{split} \mathcal{O}_{\phi D} &= \left| \phi^\dagger i D_\mu \phi
ight|^2 \ \mathcal{O}_{\phi WB} &= (\phi^\dagger \sigma_a \phi) W^a_{\mu
u} B^{\mu
u} \end{split}$$

Indirect effect associated to modifications in µ decay (G_F)

$$\Delta_{G_F} = \left(C_{\phi l}^{(3)} \right)_{22} + \left(C_{\phi l}^{(3)} \right)_{11} - (C_{ll})_{1221}$$

 $\mathcal{O}_{ll} = (\overline{l}\gamma_{\mu}l)(\overline{l}\gamma^{\mu}l)$

High Precision for the LHC

W-boson mass preliminary expected uncertainites HERA LHeC FCC ----LHeC & FCC HOH **PDG** [2016] ± 15 MeV 83.4 83.45 m_w [GeV] 83.3 83.35 Inner errors: exp. only Outer errors: exp. + PDF

Spacelike M_w to 10 MeV from ep \rightarrow Electroweak thy test at 0.01% !

Predict the Higgs cross section in pp to 0.2% precision which matches the M_H measurement and removes the PDF error

Predict M_w in pp to 2.8 MeV \rightarrow Remove PDF uncertainty on M_w LHC