Higgs physics at the LHeC and the FCC-he

Uta Klein on behalf of the LHeC/FCC-he Higgs Group

DIS 2018, Kobe, April 19th, 2018

SM Higgs Production in ep

Total cross section [fb]

(LO QCD CTEQ6L1 M_H=125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-he
CC DIS NC DIS	109 21	560 127
P=-80% CC DIS NC DIS	196 25	1008 148

•Scale dependencies of the LO calculations are in the range of 5-10%.

• NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.

[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993][B.Jager, arXiv:1001.3789]

VBF Higgs Production in ep (top)

ep: Higgs production in ep comes uniquely from either CC or NC DIS via VBF

Clean final states, e.g. Hbb with S/B >1 e-h Cross Calibration for Precision ep Clean, precise reconstruction and easy distinction of ZZH and WWH without pile-up:

<0.1@LHeC up to 1@FCCeh events

VBF: Small theoretical uncertainties!

pp: Higgs production in pp comes predominantly from $gg \rightarrow H$: high rates crucial for rare decays LHC VBF cross section about 200 fb (about as large as at the LHeC).

Pile-up in pp at 5 10³⁴ cm⁻² s⁻¹ is 150@25ns FCC-hh: pile-up 500-1000 S/B very small for bb Final Precision in pp needs accurate N³LO PDFs & α_{c}

Analysis Framework and 'Detector'

Event generation

- SM or BSM production
- CC & NC DIS background
- by MadGraph5/MadEvent

Fragmentation
 Hadronization
 by PYTHIA (modified for ep)

Fast detector simulation by Delphes → test of LHeC detector

S/B analysis \rightarrow cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using <u>pT of scattered quark</u> <u>as scale (CDR ŝ)</u> for ep processes with MadGraph5
- Higgs mass 125 GeV as default
- Fragmentation & hadronisation uses epcustomised Pythia.
- Delphes 'detector' → displaced vertices and signed impact parameter distributions → studied for LHeC, and used for FCC-eh SM Higgs extrapolations
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL of ~ 5 μm, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R&D 'needed')

LHeC@HL-LHC: SM Higgs rates @ 1 ab⁻¹

Baseline: Realistic option of an 1000 fb⁻¹ ep collider − 1000 times HERA Lumi (stronger e-source, stronger focussing magnets) and excellent performance of LHC (higher brightness of proton beam) → full MG5 + Pythia + Delphes feasibility studies

						ottimate potarisea
√s= 1.3 TeV	LHeC Higgs	3	$CC (e^-p)$	NC (e^-p)	$\operatorname{CC}(e^+p)$	e-beam of <u>60 GeV</u>
	Polarisation	L	-0.8	-0.8	0	and LHC 7 TeV p-
	Luminosity	$[ab^{-1}]$	1	1	0.1	beams, 10 years
	Cross Sectio	on [fb]	196	25	58	of operation
	Decay B	rFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^H e^- p$	$\mathcal{N}_{CC}^{H} e^{+}p$	
	$H \to b\overline{b}$	0.577	113 100	13 900	3 350	Decay to bb is
	$H \to c\overline{c}$	0.029	5700	700	170	dominating
	$H \to \tau^+ \tau^-$	0.063	$12 \ 350$	1 600	370	decay mode :
	$H \to \mu \mu$	0.00022	50	5	_	58%
nnunarfact	$H \to 4l$	0.00013	30	3	_	
<i>pp:</i> periect	$H \rightarrow 2l 2 \nu$	0.0106	2080	250	60	Higgs decay to
Higgs	$H \to gg$	0.086	16 850	2050	500	charm is factor
factory for	$H \to WW$	0.215	42 100	5150	$1 \ 250$	20 loss likoly
gluon-	$H \to ZZ$	0.0264	5200	600	150	ZU IESS LIKELY
induced	$H \to \gamma \gamma$	0.00228	450	60	15	than HDD
rare decays	$H \to Z\gamma$	0.00154	300	40	10	
·	https://	twiki.cern.cl	h/twiki/bin/vi	ew/LHCPhysic	s/CERNYellow	ReportPageBR2014 5

Branching for invisible Higgs Values given in case of 2 σ and L=1 ab⁻¹

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

- Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
- Results for full MG5+Delphes analyses, done for 3 cms energies, look very encouraging for a measurement of the branching of Higgs to invisible in ep down to 1.2% (1.7%) for 2 (1) ab⁻¹
- ✓ We also checked LHeC ← → FCC-he scaling with the corresponding cross sections (* results in table) : Downscaling FCC-he simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1% → all well within uncertainties of projections of ~25%
- employ further synergies within LHC community and HL-LHC&FCC study group
 further detector and analysis details have certainly an impact on results

BDT:U Klein; Cut-based: M Kuze, M Tanaka

Dijet Mass Candidates HFL untagged

'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100%! → However, addition of small angle electron taggers will reduce PHP to ~1-2%

→ Main systematic checks: variations of background contribution and tagging efficiencies

Uta & Max Klein, Contribution to FCC Workshop, 16.1.2018, preliminary

New: Estimates of Higgs Prospects

- Use LO Higgs cross sections σ_H for M_H=125 GeV, in [fb], and branching fractions BR(H→XX from Higgs Cross Section Handbook (c.f. appendix)
- Apply further branching, BR(X→FS) in case e.g. of W→ 2 jets and use acceptance, Acc, estimates based on MG5, for further decay
- Use reconstruction efficiencies, ε, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiV:1511.05170
- Use fully simulated LHeC Hbb and Hcc results as baseline for S/B ranges
- Use fully simulated Higgs to invisible for 3 ep c.m.s. scenarios as guidance for extrapolation uncertainty (~25%)
- Estimate HIggs events per decay channel for certain Luminosity in [fb⁻¹]

$$N = \sigma_{_H} \bullet BR(H \to XX) \bullet BR(X \to FS) \bullet L$$

• Calculate uncertainties of signal strengths w.r.t. SM expectation

$$\frac{\delta\mu}{\mu} = \frac{1}{\sqrt{N}} \bullet f$$
 with $f = \sqrt{\frac{1+1/(S/B)}{Acc \bullet \varepsilon}}$

 μ = -

CC DIS WWH \rightarrow H

FCC-he L=2 ab⁻¹

	bb	ww	gg	ττ	СС	ZZ	γγ
BR2014	0.577	0.215	0.086	0.0632	0.0291	0.0264	0.00228
$\delta \text{BR}_{\text{theory}}$	3.2%	4.2%	10.1%	5.7%	12.2%	4.2%	5.0%
Ν	1.15 10 ⁶	4.3 10 ⁵	1.72 10 ⁵	1.26 10 ⁵	5.8 10 ⁴	5.2 10 ⁴	4600
f	2.86 _{BDT}	16	7.4	5.9	5.6 _{BDT}	8.9	3.23
δμ/μ [%]	0.27	2.45	1.78	1.65	2.36	3.94	4.74

Further coupling constraints to be explored (simplified for illustration only!):

 $\sigma(WW \to H \to WW) \propto \kappa^{4}(HWW)$ $\sigma(WW \to H \to bb) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hbb)$ $\sigma(WW \to H \to \tau\tau) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(H\tau\tau)$ $\sigma(WW \to H \to gg) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hgg)$ $\sigma(WW \to H \to cc) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hcc)$ $\sigma(WW \to H \to ZZ) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(HZZ)$ Note: $\sigma(ZZ \to H \to WW) \propto \kappa^{2}(HZZ) \cdot \kappa^{2}(HWW)_{10}$

Uta & Max Klein, Contribution to HL/HE Workshop, 4.4.2018, preliminary

Signal Strengths @ LHeC - HE-LHeC - FCCeh

M+U.Klein, 6.3.18

Charged Currents: $ep \rightarrow vHX$ Neutral Currents: $ep \rightarrow eHX$

Note: HWW and HZZ requires different e+e- machine settings / c.m.s. energies for high precision →NC and CC DIS together over-constrain Higgs couplings in a combined fit.

 $E_e = 60 \text{ GeV}$ LHeC $E_p = 7 \text{ TeV}$ L=1ab⁻¹ HE-LHC $E_p = 14 \text{ TeV}$ L=2ab⁻¹ FCC: $E_p = 50 \text{ TeV}$ L=2ab⁻¹

Higgs Couplings			e Wizz	V,e H b,c,t 5,c,t	Μ _H Γ _H =	=125 GeV 4.088 MeV	
bb WW gg τ			ττ	сс	ZZ	γγ	
BR 2016 (BR2014)	0.5824 (0.577)	0.2137 (0.215)	0.08187 (0.086)	0.06272 (0.0632)	0.02891 (0.0291)	0.02619 (0.0264)	0.00227 (0.00228)

CC DIS: $WW \rightarrow H \rightarrow i i$ (decay into FS i as listed in the table)

$$\sigma_{WW\to H\to ii} = \sigma_{WW\to H} \cdot br_i \propto \sigma_H^{SM} \cdot br_i^{SM} \cdot \kappa_W^2 \cdot \kappa_i^2 \cdot \frac{\Gamma^{m}}{\sum_i \kappa_i^2 \Gamma_i}$$

NC DIS: $ZZ \rightarrow H \rightarrow i i$ (decay into FS i as listed in the table)

$$\sigma_{ZZ \to H \to ii} = \sigma_{ZZ \to H} \cdot br_i \propto \sigma_H^{SM} \cdot br_i^{SM} \cdot \kappa_Z^2 \cdot \kappa_i^2 \cdot \frac{\Gamma^{\mathsf{SM}}}{\sum_j \kappa_j^2 \Gamma_j}$$

allows a model-dependent fit of coupling uncertainties, see next slide

--SM

→ assuming SM or combination with ee absolute Higgs cross section would enable to measure sum of the 7 branching fractions to LHeC : 0.99 +- 0.02 FCC-he : 0.998 +- 0.010 12 Uta & Max Klein, Contribution to FCC Week, 6.4.2018, preliminary

Model-dependent Coupling Fit

 \rightarrow Assuming SM branching fractions weighted by the measured κ values, and Γ_{md} (c.f. CLIC model-dependent method)

 $E_e = 60 \text{ GeV } L=2ab^{-1}$ HE-LHC $E_p = 14 \text{ TeV}$ FCC: $E_p = 50 \text{ TeV}$

See also talk by Jorge de Blas at this workshop for further fits and ep+ee combinations.

Uta & Max Klein, Contribution to HL/HE Workshop, 4.4.2018, preliminary

Model-dependent Coupling Fit @ LHeC

15

LHO LHEC and HL-LHC Higgs Prospects

J. De Blas, M.+U. Klein, 16.4.2018

→ Amazing prospect for measuring fundamental Higgs couplings to high precision (dark red) at LHC with pp + ep using SM assumptions.

HL-LHC prospects using ATLAS 2014 projections (3ab⁻¹) w and w/o theoretical uncertainties ('no thy unc') in a SM coupling fit \rightarrow to be updated with HL-LHC yellow report in preparation

Higgs precision observables at FCC ee and eh

Fit to modified Higgs couplings (assuming no extra invisible decays)

Talk by J deBlas @ FCC Week

	FCC-ee			FCC-eh
Coupling	Relative precision	NEW <	Coupling	Relative precision
κ_b	0.58%	ZAN	κ_b	0.74%
κ_t	-		κ_t	_
$\kappa_{ au}$	$\mathbf{0.78\%}$	'	$\kappa_{ au}$	1.10%
κ_c	1.05%		$\kappa_{oldsymbol{c}}$	1.35%
κ_{μ}	9.6%		$\kappa_{oldsymbol{\mu}}$	_
κ_Z	0.16%		κ_Z	0.43%
κ_W	0.41% —		κ_W	0.26%
κ_g	1.23%		κ_{g}	1.17%
κ_{γ}	$\mathbf{2.18\%}$		$\kappa_{oldsymbol{\gamma}}$	$\mathbf{2.35\%}$
$\kappa_{Z\gamma}$	_		$\kappa_{Z\gamma}$	_
		$\kappa_{\cdot} = a_{1\cdot}/a_{2\cdot}^{SM}$		Higgs \rightarrow invisible: 2

Summary by J deBlas

gni/gni

ttH: 1.85%

- All three FCC options complement each other very well:
 - FCC-ee allows not only very precise measurements of the Higgs and EWPO but also provides the normalization for more precise measurements at the FCC-eh and FCC-hh
 - FCC-eh complements FCC-ee providing information about light quark EW couplings. Similar precision in the Higgs sector
 - FCC-hh fills gaps in precision Higgs measurements for rare decays, top and the Higgs selfcoupling

NEW ee+ep+pp

Talk by J deBlas@FCC Week

Higgs complementarities: Global fit to Higgs couplings at FCC

All single Higgs couplings can be determined below the 1%

500 as (500 at	HL	LHC + FCC
Precise determinations for the leading couplings	Coupling	Relative precision
UZZ Crucial for normalization of ECC lab results	κ_b	0.38%
HZZ Crucial for normalization of FCC-nn results	κ_t	0.51%
ECC bb	$\kappa_{ au}$	0.58%
Completes the picture with precise	κ_c	0.79%
determinations of Top and coupling	κ_{μ}	0.42%
ECC-ee/FCC-eh Precise determinations for the leading couplings HZZ Crucial for normalization of FCC-hh results <u>FCC-hh</u> Completes the picture with precise determinations of Top and coupling associated to rare decays <u>NOT MODEL-INDEPENDENT</u> : Results assume that, if there is New physics, it can only be in the Higgs couplings	κ_Z	0.14%
	κ_W	0.17%
NOT MODEL-INDEPENDENT:	κ_g	0.74%
Results assume that, if there is New physics, it can only be in the Higgs couplings	$\kappa_{oldsymbol{\gamma}}$	0.40%
<u>so in the rigge couplinge</u>	$\kappa_{Z\gamma}$	0.52%
	CM	

$$\kappa_i \equiv g_{hi}/g_{hi}^{SN}$$

FGG Week 2010	
Amsterdam, April 11, 2018	

Combine the complementary measurements fo rbest physics outcome!

Uta & Max Klein, Contribution to HL/HE Workshop, 4.4.2018, preliminary

... and Consistency Checks of EW Theory

 \rightarrow similar tests possible using various cms energy CLIC machines, however, in ep, we could perform them with one machine

 $\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_V^2}{\kappa_Z^2}$

$$\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W$$

 \rightarrow Dominated by H \rightarrow bb decay channel precision

Very interesting consistency check of EW theory

Values for cos²O given here are the PDG value as central value
 0.777 and uncertainty from ep Higgs measurement prospects

LHeC:± 0.010HE-LHeC± 0.006FCC-eh± 0.004

Another nice test: How does the Higgs couple to 3rd and 2nd generation quark? b is down-type and c is up-type

$$\frac{\sigma_{WW \to H \to c\bar{c}}}{\sigma_{WW \to H \to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}$$

Measure CP Properties of Higgs [CDR before Higgs discovery M_{H} =120 GeV, E_{p} =7 TeV]

- Higgs couplings with a pair of gauge bosons (WW/ZZ) and a pair of heavy fermions (t/b/τ) are largest.
- Higgs@LHeC allows uniquely to access HWW vertex \rightarrow explore the CP properties of HVV couplings: BSM will modify CP-even (λ) and CP-odd (λ ') states differently

• Study *shape changes* in DIS normalised CC Higgs \rightarrow bb cross section versus the azimuthal angle, $\Delta \phi_{MET,J}$, between $E_{T,miss}$ and forward jet.

coupling with 17% accuracy at LHeC -> extrapolation to FCCeh: ttH to 1.85%

Ut

Double Higgs Production FCC-he study

[1509.04016]

FCChe g_{HHH} ~ 20% in ep

Exotic Higgs@FCC-he

First Results @ FCC-he

L=1 ab⁻¹ P_e=-80% Uta Klein Michael o'Keefe Liverpool

Very promising first results to discover an exotic Higgs decay into two new light scalars at FCChe down to a BR of 1% for 1 ab⁻¹. A BR of 10% could be discovered within 1 year (100 fb⁻¹).

Values for BDT>0				Μ _φ (GeV)		_ r	(9)
			20			60	$Z = \sqrt{2} \left[(S+B) \ln \left(1 + \frac{S}{B} \right) \right]$	
	BR (%)	σ (fb)	Δσ (fb)	Z	σ (fb)	Δσ (fb)	Z	
	0.2	0.03	0.02	1.14	0.03	0.03	3 1.17	
	0.4	0.05	0.02	2.27	0.07	0.03	3 2.33	
	0.6	0.08	0.02	3.37	0.10	0.03	3 3.47	
	0.8	0.10	0.02	4.46	0.13	0.03	4.59	
	1	0.13	0.03	5.54	0.17	0.03	3 5.71	
Uta Klein.	0.8	0.10 0.13	0.02	4.46 5.54	0.13 0.17	0.03	3 4.59 3 5.71	

Further BSM Higgs Studies

Example: Charged Higgs

- *H*±, in Vector Boson Scattering [Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505]
- H±±, in Vector Boson Scattering
 [H. Sun, X. Luo, W. Wei and T. Liu, Phys. Rev. D 96, 095003 (2017)]
- *H*+, in 2HDM type III, $p \ e \rightarrow \nu j H \rightarrow \nu j \ cb$ [J. Hernández-Sánchez et al., 1612.06316]

(see also talk by K. Wang at 2nd FCC Physics Week, Jan 2018)

...to take home: ep+pp >~ 2030

- LHeC (FCC-he) could measure the dominant Higgs couplings including ttH to 0.6-4% (0.2-2%) precision [CC+NC, no pile-up, clean final state..]
- ep (>~1 TeV) complement with HWW the ee (250-350 GeV) HZZ coupling measurements: HIGH luminosity is KEY!
- eh has a strong Higgs program, that turns the LHC (FCC-pp) machine (ep+pp) into very powerful Higgs facilities, including a strong Higgs BSM ep potential (H→ invisible, HH, CP nature,...)
- ep would empower the physics potential of pp (searches, Higgs..) through high precision QCD measurements: flavour separated PDFs at N³LO, α_s to per mille ...

Already with the first ~100 fb⁻¹ ep data (first few years)

- → use ep as the 'near' detector for pp to beat the α_s and PDF uncertainties for Higgs@HL-LHC from ~3% to <~0.5%,
- $\rightarrow \delta m_b \text{ to 10 MeV;} \delta m_{charm} \text{ to 3 MeV}$

Additional Sources & Thanks to

- Much more material can be found here: LHeC and FCC-eh Workshop, September 2017, CERN <u>https://indico.cern.ch/event/639067/</u>
- The LHeC/FCC-eh study group, <u>http://cern.ch/lhec</u>.
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- 1st FCC Physics Workshop, 16.1.-20.1.2017, CERN <u>https://indico.cern.ch/event/550509/</u>
- Before April 2018: Higgs branching fractions and uncertainties taken from <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u>

<u>CERNYellowReportPageBR2014</u>

- Update used from April 2018 <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u> <u>CERNYellowReportPageBR</u>
- FCC Week 2018, Amsterdam, <u>https://indico.cern.ch/event/656491/</u>

Special thanks to my colleagues in the LHeC/FCC-he Higgs group and to Jorge de Blas for the discussion of model-dependent coupling fits.

Additional material

LH₀ electrons for pp : ERL + LHC

Two Electron LINACs + 3 return arcs: using energy recovery in same structure: 'green' technology with power consumption < 100 MW : nominal E_ = 60 GeV Beam dump: no radioactive waste! high electron polarisation of 80-90% tune-up dump comp. RF **10-GeV linac** injector Installation decoupled from LHC operation 0.12 km 0.17 km comp. RF 20, 40, 60 GeV 1.0 km **Concurrent ep and HL-LHC** 2.0 km 10, 30, 50 GeV operation! LHC p total circumference ~ 8.9 km Same idea holds for HE-LHC and ERL-e FCC-hh dun LHC-p ↔ 10-GeV linac 26 km 0.03 km e- final focus ep Lumi 10³⁴ cm s⁻² s⁻¹ ** 100 fb⁻¹ per year, e.g. ~2030-2040 (HL-LHC) **Detector Design** L= 1000 fb⁻¹ total collected in 10 years for HL+HE+FCC ep Peter Kostka et al. eA luminosity estimates ~ 10³³ cm s⁻² s⁻¹ eA \rightarrow installation in 2 years, e.g. during LS4

** based on existing HL-LHC proposal

LHeC CDR: arXiv:1206.2913 and updates at LheC/FCC-eh WS@CERN, 9/17

Uta & Max Klein, gHZZ in NC DIS

Kinematics and M_H : ee vs ep

LHeC Precision Partons for Higgs@pp

→ <u>Using LHeC input</u>: experimental uncertainty of predicted LHC Higgs

cross section due to PDFs and α_s is strongly **reduced to <~0.5%**

- → theoretically clean path to determine N³LO PDFs using ep DIS
- \rightarrow ALL those 'benefits' for pp within the first few years, using ~100 fb⁻¹ ep data

NNLO pp—Higgs Cross Sections at 14 TeV

→ precision from LHeC can add a very significant constraint on the Higgs mass and challenge Lattice QCD calculations for α_s :

Invisible Higgs@LHeC relating the Higgs and the 'dark' sectors

HL-LHC @ 3 ab⁻¹ [arXiv:1411. 7699] Br $(h \rightarrow \not\!\!\!\!E_T)$ < 3.5% @95% C.L., MVA based For LHeC, assume : 1ab⁻¹, P_e=-0.9, <u>cut based</u> Br $(h \rightarrow \not\!\!\!\!E_T)$ < 6% @ 95 % C.L.

 $C^2_{\text{MET}} = \kappa_Z^2 \times \text{Br}(h \to \not{E}_T)$

Y.-L. Tang et al., arXiv: 1508.01095

- ➔ potential much enhanced for FCC-eh @ 3.5 TeV and HE-LHC-eh @ 1.8 TeV
- NEW studies performed on Delphes detectorlevel using our Madevent framework

Exotic Higgs Decays

$$h \to \phi \phi \to 4b$$

φ: a spin-0 particle from new physics.

$$eq \rightarrow \nu_e hq' \rightarrow \nu_e \phi \phi q' \rightarrow \nu_e b \bar{b} b \bar{b} q'$$

 $C_{4b}^2 = \kappa_V^2 \times {\rm Br}(h \to \phi \phi) \times {\rm Br}^2(\phi \to b \bar{b})$

$$\mathcal{L}_{eff} = \lambda_h v h \phi^2 + \lambda_b \phi \bar{b} b + \mathcal{L}_{\phi \, \text{decay,other}}$$

S. Liu, Y. L. Tang, C. Zhang, S. Zhu, 1608.08458

- Well motivated signature in extended Higgs sector.
- Difficult to probe at hadron colliders.
- LHeC signal: here using CC channel.
- Backgrounds: CC multijet, CC t/h/W/Z+jets, PHP multijet.
- PHP backgrounds assumed to be negligible after MET requirements and electron tagging.
- Current analysis is done at parton level.

@LHeC: 95% C.L. for m_{ϕ} of 20, 40, 60 GeV is 0.3%, 0.2% and 0.1% for C_{4b}^2 Uta Klein, Higgs in ep

SM Higgs into HFL Summary

- Assume a 60 GeV polarized electron beam and 1000 fb⁻¹ (~10 years running)
- Expected number of signal events and error of coupling constant from BDT results.
- Background assumed to be known to ~2%

- → Realistic and conservative HFL tagging within Delphes realised, and dependence on vertex resolution (nominal 10 µm) and anti-kt jet radius studied
- → Light jet rejection very conservative, i.e. factor 10 worse than ATLAS
- → used in full LHeC analysis and for FCC-eh extrapolations

HFL Tagging

Uta Klein & Daniel Hampson

BDT Results for Higgs @ LHeC

Uta Klein & **Daniel Hampson**

Signal Events Hbb

Hbb : Clear sensitivity to chosen jet radius; rather robust w.r.t. vertex resolution in range of 5 to 20 µm

700 Siganl

600

500

400

300

200

100

LHeC/FCC ep/eA detector

P Kostka et al.

Installation Study to fit into LHC shutdown needs directed to IP2 Andrea Gaddi et al

Detector fits in L3 magnet support

LHeC INSTALLATION SCHEDULE

Modular structure

ACTIVITY	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
DETECTOR CONTRUCTION ON SITE TO								
START BEFORE ENCLONG SHOT-DOWN								
LHC LONG SHUTDOWN START (T0)								
COIL COMMISSIONING ON SURFACE								
ACTUAL DETECTOR DISMANTLING								
PREPARATION FOR LOWERING								
LOWERING TO CAVERN								
HCAL MODULES & CRYOSTAT								
CABLES & SERVICES								
BARREL MUON CHAMBERS								
ENDCAPS MUON CHAMBERS								
TRACKER & CALORIMETER PLUGS								
BEAMPIPE & MACHINE								
DETECTOR CHECK-OUT								
LHC LONG SHUTDOWN END (T0+24m)								

LHC: First 3_o Hbb Evidence!

ATLAS, Aug 2017, sub. to JHEP

- https://arxiv.org/abs/1708.03299
- use Higgs→bb in associated production with a W or Z boson
- explore various final states (e.g. $Z \rightarrow vv$, $W \rightarrow |v, Z \rightarrow ||$ categories)
- Run-I and II combined, S/B-weighted categories : μ=0.9±0.28(stat+syst)

- ✓ Encouraging result for HL-LHC prospects
- ✓ Very encouraging for prospects in ep that we can handle S/B ~10⁻³ processes with sophisticated analysis techniques

Hbb expectation @ LHeC for 36 fb⁻¹ (½ year data): δμ~7-8% with significance of ~14

LHeC Detector for the HL/HE-LHC [arXiv:1802.04317]

Length x Diameter: LHeC (13.3 x 9 m²) HE-LHC (15.6 x 10.4) FCCeh (19 x 12) ATLAS (45 x 25) CMS (21 x 15): [LHeC < CMS, FCC-eh ~ CMS size] If CERN decides that the HE LHC comes, the LHeC detector should anticipate that

Double Higgs Production at FCC-eh

"Probing anomalous couplings using di-Higgs production in electron-proton collisions" by Mukesh Kumar, Xifeng Ruan, Rashidul Islam, Alan S. Cornell, Max Klein, Uta Klein, Bruce Mellado,

Physics Letters B 764 (2017) 247-253 [arXiv:1509.04016]

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{_{hhh}}^{(3)} + \mathcal{L}_{_{hWW}}^{(3)} + \mathcal{L}_{_{hhWW}}^{(4)}.$$

FCC-eh SM(P=-0.8) σ(HH)=430 ab in VBF!

$$\mathcal{L}_{hhh}^{(3)} = \frac{m_h^2}{2\nu} (1 - g_{hhh}^{(1)})h^3 + \frac{1}{2\nu} g_{hhh}^{(2)} h \partial_\mu h \partial^\mu h, \qquad (2)$$

$$\mathcal{L}_{hww}^{(3)} = -g \bigg[\frac{g_{hww}^{(1)}}{2m_W} W^{\mu\nu} W^{\dagger}_{\mu\nu} h + \frac{g_{hww}^{(2)}}{m_W} (W^{\nu} \partial^{\mu} W^{\dagger}_{\mu\nu} h + \text{h.c}) \bigg]$$

$$+ \frac{\tilde{g}_{hWW}}{2m_W} W^{\mu\nu} \tilde{W}^{\dagger}_{\mu\nu} h \bigg], \tag{3}$$

$$\mathcal{L}_{hhww}^{(4)} = -g^2 \left[\frac{g_{hhww}^{(1)}}{4m_W^2} W^{\mu\nu} W^{\dagger}_{\mu\nu} h^2 + \frac{g_{hhww}^{(2)}}{2m_W^2} (W^{\nu} \partial^{\mu} W^{\dagger}_{\mu\nu} h^2 + \text{h.c}) + \frac{\tilde{g}_{hhww}}{4m_W^2} W^{\mu\nu} \widetilde{W}^{\dagger}_{\mu\nu} h^2 \right].$$
(4)

→ All other g
 coefficients are
 anomalous
 couplings to the
 hhh, hWW and
 hhWW
 anomalous
 vertices
 → those are 0
 in SM

ightarrow see talk by Mukesh Kumar

Uta Klein, Higgs in ep

CP Nature of Top-Higgs Coupling

16

ĹΗ

Exclusion Contours (fiducial cross section)

