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• Unlike the atom, proton structure is complex
and nonperturbative

Ø Complex origin of the proton spin
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Figure 1-3: ALL vs. xT for inclusive jet production at mid-
rapidity in 200 GeV (blue circles) [6] and 510 GeV (red 
squares) [7] p+p collisions, compared to NLO predictions 
[8,9] for three recent NLO global analyses [10,11,12] 
(blue curves for 200 GeV and red curves for 510 GeV). 

Figure 1-4: ALL vs. xT for π0-meson production at mid 
rapidity with the point-to-point uncertainties in 200 GeV 
(blue circles) [13] and 510 GeV (red squares) [14] p+p 
collisions, compared to NLO predictions [15] for three 
recent NLO global analyses [10,11,12] (blue curves for 
200 GeV and red curves for 510 GeV). The gray/gold 
bands give the correlated systematic uncertainties. 

 

 

 
 
 
Figure 1-5: The running integral for Δg as a function of 
xmin at Q2 = 10 GeV2 as obtained in the DSSV global 
analysis framework. The different uncertainty bands at 
90% C.L. are estimated from the world DIS and SIDIS 
data, with and without including the combined set of pro-
jected pseudo-data for preliminary and RHIC measure-
ments up to Run-2015, respectively as well as including 
EIC DIS pseudo data (taken from Ref. [16]). 

 
The production of W± bosons in longitudinally 

polarized proton-proton collisions serves as a 
powerful and elegant tool [17] to access valence 
and sea quark helicity distributions at a high 
scale, Q∼MW, and without the additional input of 
fragmentation functions as in semi-inclusive DIS. 
While the valence quark helicity densities are 
already well known at intermediate x from DIS, 
the sea quark helicity PDFs are only poorly con-
strained. The latter are of special interest due to 
the differing predictions in various models of 
nucleon structure (see Ref. [18, 19]). The 2011 
and the high statistics 2012 longitudinally polar-
ized p+p data sets provided the first results for 
W± with substantial impact on our knowledge of 
the light sea (anti-) quark polarizations (see Fig-

ure 1-7 (left)). With the complete data from 2011 
to 2013 analyzed by both the PHENIX (see Fig-
ure 1-6 (right)) and STAR experiments the final 
uncertainties will allow one to measure the inte-
grals of the ∆! and ∆! helicity in the accessed x 
range above 0.05. The uncertainty on the flavor 
asymmetry for the polarized light quark sea 
∆! − ∆!  will also be further reduced and a 
measurement at the 2σ level will be possible (see 
Figure 1-7 (right)). These results demonstrate 
that the RHIC W program will lead, once all the 
recorded data are fully analyzed, to a substantial 
improvement in the understanding of the light 
sea quark and antiquark polarization in the 
nucleon. 
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• The leading small-x behavior is the 
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The small-x evolution for the dipole gluon helicity TMD is constructed in Sec. IV. There we begin by reconstructing
the DLA evolution equations for the polarized dipole amplitude from [9]; since now we have an operator expression for
the polarized dipole amplitude, we use the operator language, similar to that developed by Balitsky in [11, 12]. This
is a cross-check of both our equations in [9] as well as the operator definition and approach. We proceed by applying
the operator method to evaluate the operator related to the dipole gluon helicity TMD. The result, in the large-N

c

limit, is the evolution equations (96) which mix this “gluon helicity operator” with the “quark helicity operator” given
by the polarized dipole amplitude. These equations are solved in Sec. V, both analytically and numerically. The end
result is the following small-x asymptotics of the gluon helicity distribution:
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Equations (3) and (4) give us the leading-in-↵
s

small-x asymptotics of both the quark and gluon helicity distributions.
It is interesting to note that ↵G

h

< ↵q

h

; we explore the phenomenological consequences of this in Sec. VI and Sec. VII.
In Sec. VI we estimate the amount of the proton’s spin carried by small-x gluons using a simple phenomenological

approach. As depicted in Fig. 9, we observe a 5 ÷ 10% increase in the amount of gluon spin if we use our intercept
(4) to augment the existing DSSV14 [43] PDF parameterization. We also discuss the importance of incorporating our
work into future fits of helicity PDFs.

We conclude in Sec. VII by summarizing our main results and by outlining further steps which need to be made in
order to perform a detailed comparison with the experimental data.

II. THE QUARK HELICITY TMD AND THE POLARIZED DIPOLE AMPLITUDE

A. Review

In [9], we derived the polarized small-x evolution equations for the TMD quark helicity distribution [44],

gq1L(x, k
2
T

) =
1

(2⇡)3
1

2

X

S

L

S
L

Z
d2r dr� eixP

+
r

�
e�ik·r hP, S

L

|  ̄(0) U [0, r] �
+�5

2
 (r) |P, S

L

i
r

+=0 , (5)
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in the flavor-singlet case [37]. In the above and throughout this paper, we use light-front coordinates x± ⌘ 1p
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denote transverse vectors (x1
?, x
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?) by x and their magnitudes by x
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⌘ |x|, and indicate di↵erences in transverse
coordinates by the abbreviated notation x10 ⌘ x1 � x0. The center-of-mass energy squared for the scattering process
is s, the infrared (IR) transverse momentum cuto↵ is ⇤, and z is the fraction of the light-cone momentum of the
dipole carried by the polarized (anti-)quark. As is well-known, the TMD (5) contains a process-dependent gauge link
U [0, r]. For specificity, in [9] we considered semi-inclusive deep inelastic scattering (SIDIS), although the resulting
small-x evolution equations also apply to the collinear quark helicity distribution, which is process independent.

The impact-parameter integrated polarized dipole amplitude is
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d2b10 G10(zs) (7)

with b10 = (x1+x0)/2. The polarized dipole scattering amplitude G10(zs) was defined as the polarized generalization
of the forward dipole S-matrix in terms of Wilson lines [9]:
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where the double-angle brackets are defined to scale out the center-of-mass energy zs between the polarized (anti)quark
and the target. While the unpolarized Wilson lines in Eq. (8) are the standard eikonal gauge links (in the fundamental
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2
(x0±x3),

denote transverse vectors (x1
?, x

2
?) by x and their magnitudes by x
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⌘ |x|, and indicate di↵erences in transverse
coordinates by the abbreviated notation x10 ⌘ x1 � x0. The center-of-mass energy squared for the scattering process
is s, the infrared (IR) transverse momentum cuto↵ is ⇤, and z is the fraction of the light-cone momentum of the
dipole carried by the polarized (anti-)quark. As is well-known, the TMD (5) contains a process-dependent gauge link
U [0, r]. For specificity, in [9] we considered semi-inclusive deep inelastic scattering (SIDIS), although the resulting
small-x evolution equations also apply to the collinear quark helicity distribution, which is process independent.

The impact-parameter integrated polarized dipole amplitude is
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10, zs) =

Z
d2b10 G10(zs) (7)

with b10 = (x1+x0)/2. The polarized dipole scattering amplitude G10(zs) was defined as the polarized generalization
of the forward dipole S-matrix in terms of Wilson lines [9]:
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where the double-angle brackets are defined to scale out the center-of-mass energy zs between the polarized (anti)quark
and the target. While the unpolarized Wilson lines in Eq. (8) are the standard eikonal gauge links (in the fundamental
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The small-x evolution for the dipole gluon helicity TMD is constructed in Sec. IV. There we begin by reconstructing
the DLA evolution equations for the polarized dipole amplitude from [9]; since now we have an operator expression for
the polarized dipole amplitude, we use the operator language, similar to that developed by Balitsky in [11, 12]. This
is a cross-check of both our equations in [9] as well as the operator definition and approach. We proceed by applying
the operator method to evaluate the operator related to the dipole gluon helicity TMD. The result, in the large-N

c

limit, is the evolution equations (96) which mix this “gluon helicity operator” with the “quark helicity operator” given
by the polarized dipole amplitude. These equations are solved in Sec. V, both analytically and numerically. The end
result is the following small-x asymptotics of the gluon helicity distribution:
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Equations (3) and (4) give us the leading-in-↵
s

small-x asymptotics of both the quark and gluon helicity distributions.
It is interesting to note that ↵G
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< ↵q

h

; we explore the phenomenological consequences of this in Sec. VI and Sec. VII.
In Sec. VI we estimate the amount of the proton’s spin carried by small-x gluons using a simple phenomenological

approach. As depicted in Fig. 9, we observe a 5 ÷ 10% increase in the amount of gluon spin if we use our intercept
(4) to augment the existing DSSV14 [43] PDF parameterization. We also discuss the importance of incorporating our
work into future fits of helicity PDFs.

We conclude in Sec. VII by summarizing our main results and by outlining further steps which need to be made in
order to perform a detailed comparison with the experimental data.

II. THE QUARK HELICITY TMD AND THE POLARIZED DIPOLE AMPLITUDE

A. Review

In [9], we derived the polarized small-x evolution equations for the TMD quark helicity distribution [44],
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by relating it to a “polarized dipole amplitude” G(x2
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in the flavor-singlet case [37]. In the above and throughout this paper, we use light-front coordinates x± ⌘ 1p
2
(x0±x3),

denote transverse vectors (x1
?, x
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?) by x and their magnitudes by x
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⌘ |x|, and indicate di↵erences in transverse
coordinates by the abbreviated notation x10 ⌘ x1 � x0. The center-of-mass energy squared for the scattering process
is s, the infrared (IR) transverse momentum cuto↵ is ⇤, and z is the fraction of the light-cone momentum of the
dipole carried by the polarized (anti-)quark. As is well-known, the TMD (5) contains a process-dependent gauge link
U [0, r]. For specificity, in [9] we considered semi-inclusive deep inelastic scattering (SIDIS), although the resulting
small-x evolution equations also apply to the collinear quark helicity distribution, which is process independent.

The impact-parameter integrated polarized dipole amplitude is

G(x2
10, zs) =

Z
d2b10 G10(zs) (7)

with b10 = (x1+x0)/2. The polarized dipole scattering amplitude G10(zs) was defined as the polarized generalization
of the forward dipole S-matrix in terms of Wilson lines [9]:
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where the double-angle brackets are defined to scale out the center-of-mass energy zs between the polarized (anti)quark
and the target. While the unpolarized Wilson lines in Eq. (8) are the standard eikonal gauge links (in the fundamental
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FIG. 2. More specific diagrams contributing to the quark TMD defined in Eq. (4).

To see this, first consider diagram E, more precisely the part of it shown in Fig. 3. We are working in the frame
where the target is moving in the light-cone “+” direction and the Wilson lines point in the “-” direction. We assume
that some “-” momentum integral has ben carried out to put the p � l gluon line on mass shell in Fig. 3, such that
l

� ⇡ 0. The q + l gluon line is o↵ mass shell.
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FIG. 3. The part of diagram E evaluated in the text.
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The small-x evolution for the dipole gluon helicity TMD is constructed in Sec. IV. There we begin by reconstructing
the DLA evolution equations for the polarized dipole amplitude from [9]; since now we have an operator expression for
the polarized dipole amplitude, we use the operator language, similar to that developed by Balitsky in [11, 12]. This
is a cross-check of both our equations in [9] as well as the operator definition and approach. We proceed by applying
the operator method to evaluate the operator related to the dipole gluon helicity TMD. The result, in the large-N

c

limit, is the evolution equations (96) which mix this “gluon helicity operator” with the “quark helicity operator” given
by the polarized dipole amplitude. These equations are solved in Sec. V, both analytically and numerically. The end
result is the following small-x asymptotics of the gluon helicity distribution:
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small-x asymptotics of both the quark and gluon helicity distributions.
It is interesting to note that ↵G
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; we explore the phenomenological consequences of this in Sec. VI and Sec. VII.
In Sec. VI we estimate the amount of the proton’s spin carried by small-x gluons using a simple phenomenological

approach. As depicted in Fig. 9, we observe a 5 ÷ 10% increase in the amount of gluon spin if we use our intercept
(4) to augment the existing DSSV14 [43] PDF parameterization. We also discuss the importance of incorporating our
work into future fits of helicity PDFs.

We conclude in Sec. VII by summarizing our main results and by outlining further steps which need to be made in
order to perform a detailed comparison with the experimental data.

II. THE QUARK HELICITY TMD AND THE POLARIZED DIPOLE AMPLITUDE

A. Review

In [9], we derived the polarized small-x evolution equations for the TMD quark helicity distribution [44],
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in the flavor-singlet case [37]. In the above and throughout this paper, we use light-front coordinates x± ⌘ 1p
2
(x0±x3),

denote transverse vectors (x1
?, x
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?) by x and their magnitudes by x
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⌘ |x|, and indicate di↵erences in transverse
coordinates by the abbreviated notation x10 ⌘ x1 � x0. The center-of-mass energy squared for the scattering process
is s, the infrared (IR) transverse momentum cuto↵ is ⇤, and z is the fraction of the light-cone momentum of the
dipole carried by the polarized (anti-)quark. As is well-known, the TMD (5) contains a process-dependent gauge link
U [0, r]. For specificity, in [9] we considered semi-inclusive deep inelastic scattering (SIDIS), although the resulting
small-x evolution equations also apply to the collinear quark helicity distribution, which is process independent.

The impact-parameter integrated polarized dipole amplitude is

G(x2
10, zs) =

Z
d2b10 G10(zs) (7)

with b10 = (x1+x0)/2. The polarized dipole scattering amplitude G10(zs) was defined as the polarized generalization
of the forward dipole S-matrix in terms of Wilson lines [9]:
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where the double-angle brackets are defined to scale out the center-of-mass energy zs between the polarized (anti)quark
and the target. While the unpolarized Wilson lines in Eq. (8) are the standard eikonal gauge links (in the fundamental
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To see this, first consider diagram E, more precisely the part of it shown in Fig. 3. We are working in the frame
where the target is moving in the light-cone “+” direction and the Wilson lines point in the “-” direction. We assume
that some “-” momentum integral has ben carried out to put the p � l gluon line on mass shell in Fig. 3, such that
l

� ⇡ 0. The q + l gluon line is o↵ mass shell.

q q + l

p

l

p−l

+m u

FIG. 3. The part of diagram E evaluated in the text.
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To see this, first consider diagram E, more precisely the part of it shown in Fig. 3. We are working in the frame
where the target is moving in the light-cone “+” direction and the Wilson lines point in the “-” direction. We assume
that some “-” momentum integral has ben carried out to put the p � l gluon line on mass shell in Fig. 3, such that
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Our aim now is to find (V pol

x

)q. To find it, let us calculate the quark exchange in the right panel of Fig. 6. To do so,
let us first calculate the contribution of the left t-channel quark exchange in the right panel of Fig. 6:
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and we neglected terms further suppressed by 1/p�2 . Fourier transforming (40) we get
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Similarly, the contribution of the right t-channel exchange of the right panel in Fig. 6 gives
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Combining Eqs. (42) and (43) we write the operator, the �-dependent par of which would give us the polarized Wilson
line:
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B. Polarized adjoint “Wilson line”

Let us repeat the calculation from Sec. II B of [1], but now for the gluon polarized Wilson line.
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FIG. 7. The polarized adjoint Wilson line in the quasi-classical approximation in A

� = 0 gauge. The filled circles denote the
spin-dependent sub-eikonal scattering.

We begin by considering the scattering amplitude in the left panel of Fig. 7. By analogy to the calculation in [1]
we write
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with all the indices as labeled in the left panel of Fig. 7. Again we only keep the spin-dependent terms proportional
to � and A

µ

denotes the color matrix A

a

µ

T
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c

). Fourier transforming to
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We thus obtain the polarized adjoint Wilson line
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where F12 is the component of the field-strength tensor in the adjoint representation and

U
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2

6

4

ig
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Z
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dx
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(50)

is the adjoint Wilson line.
Finally, defining a rescaled gluon field

A(x�
, x) =

S

L

2p+1
Ā(x�

, x) (51)

Ø Polarized gluon exchange:
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FIG. 2. More specific diagrams contributing to the quark TMD defined in Eq. (4).

To see this, first consider diagram E, more precisely the part of it shown in Fig. 3. We are working in the frame
where the target is moving in the light-cone “+” direction and the Wilson lines point in the “-” direction. We assume
that some “-” momentum integral has ben carried out to put the p � l gluon line on mass shell in Fig. 3, such that
l

� ⇡ 0. The q + l gluon line is o↵ mass shell.
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FIG. 3. The part of diagram E evaluated in the text.

The contribution of the diagram in Fig. 3 is proportional to
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FIG. 6. The polarized fundamental Wilson line in the quasi-classical approximation in A

� = 0 gauge. The filled circles denote
the spin-dependent sub-eikonal scattering.

Our aim now is to find (V pol

x

)q. To find it, let us calculate the quark exchange in the right panel of Fig. 6. To do so,
let us first calculate the contribution of the left t-channel quark exchange in the right panel of Fig. 6:
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⇢(+1) =
1p
2

0

B

@

0
1
0
1

1

C

A

, ⇢(�1) =
1p
2

0

B

@

1
0
�1
0

1

C

A

, (41)

and we neglected terms further suppressed by 1/p�2 . Fourier transforming (40) we get
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Similarly, the contribution of the right t-channel exchange of the right panel in Fig. 6 gives
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Combining Eqs. (42) and (43) we write the operator, the �-dependent par of which would give us the polarized Wilson
line:
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Combining Eqs. (45) and (39) we finally write the full polarized fundamental “Wilson line” operator as
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B. Polarized adjoint “Wilson line”

Let us repeat the calculation from Sec. II B of [1], but now for the gluon polarized Wilson line.
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FIG. 7. The polarized adjoint Wilson line in the quasi-classical approximation in A

� = 0 gauge. The filled circles denote the
spin-dependent sub-eikonal scattering.

We begin by considering the scattering amplitude in the left panel of Fig. 7. By analogy to the calculation in [1]
we write
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with all the indices as labeled in the left panel of Fig. 7. Again we only keep the spin-dependent terms proportional
to � and A
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We thus obtain the polarized adjoint Wilson line
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where F12 is the component of the field-strength tensor in the adjoint representation and
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is the adjoint Wilson line.
Finally, defining a rescaled gluon field

A(x�
, x) =

S

L

2p+1
Ā(x�

, x) (51)
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� = 0 gauge. The filled circles denote the
spin-dependent sub-eikonal scattering.

We begin by considering the scattering amplitude in the left panel of Fig. 7. By analogy to the calculation in [1]
we write
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with all the indices as labeled in the left panel of Fig. 7. Again we only keep the spin-dependent terms proportional
to � and A
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We thus obtain the polarized adjoint Wilson line
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where F12 is the component of the field-strength tensor in the adjoint representation and
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is the adjoint Wilson line.
Finally, defining a rescaled gluon field

A(x�
, x) =

S

L

2p+1
Ā(x�

, x) (51)

Ø Polarized gluon exchange:

Ø Polarized quark exchange (new):
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IV. OPERATOR EVOLUTION EQUATIONS AT SMALL X

Having constructed the appropriate polarized dipole amplitudes for the dipole gluon helicity distribution (37)
and Weizsäcker-Williams gluon helicity distribution (52), we will now proceed to derive small-x evolution equations,
focusing on the dipole distribution. We will do this at the operator level using a procedure which is similar in spirit
(although di↵erent in gauge) to the background field method employed in [11].

Beginning with the operator definitions of the polarized Wilson lines and dipole amplitudes, we will separate the
gauge fields Aµ of the target into “classical” fields Aµ

cl

and “quantum” fields aµ:

Aµ(x) = Aµ

cl

(x) + aµ(x). (55)

This separation can be done using a rapidity regulator ⌘, such that the “fast” quantum fields have rapidities greater
than ⌘, while the “slow” classical fields have rapidities less than ⌘ and are e↵ectively frozen from the point of view
of the quantum fluctuations. (Here “greater” and “smaller” rapidities depend on the choice of a coordinate system,
and may be interchanged.) This is essentially the rapidity factorization approach used in [57], and the evolution
equations we will derive can be understood as renormalization group equations in the rapidity cuto↵ ⌘. The classical
fields of the target, being enhanced by the target density, will be resummed to all orders. These classical fields (in
the A� = 0 light-cone gauge) are localized in x� to a parametrically small window, which we choose to be centered
on the origin: x� 2 [�R�,+R�] ⇠ [� 1

p

+ ,+
1
p

+ ], with p+ the large momentum of the target. Although the classical

fields are Lorentz-contracted to a delta function at x� = 0, the quantum fields can extend far beyond the target; we
will calculate the first correction due to these quantum fields in perturbation theory.

As a warm-up exercise and as a cross-check of our previous work [9], we will first employ this method to rederive
the evolution equations for the polarized dipole amplitude (8) (or (22)) which governs the quark helicity distribution
at small x. We will then repeat this exercise to derive new evolution equations for the polarized dipole amplitude
(37) which governs the dipole gluon helicity distribution. We leave the corresponding evolution equations for the
Weizsäcker-Williams gluon helicity distribution for future work, although we note that the small-x asymptotics of
both gluon helicity distributions must coincide.

A. Evolution of the Polarized Dipole Operator For Quark Helicity

We begin with the polarized dipole amplitude for the quark helicity distribution Eq. (8), using the explicit operator
form (21) for the polarized Wilson line (cf. Eq. (22)):
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⌧
tr


V0 V1[�1, x�

1 ]

✓
ig ✏ij

T

@

@(x1)i?
Aj

?(x
�
1 , x1)

◆
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�
1 ,1]

�
+ c.c.

�
(zs). (56)

Because this operator contains only t-channel gluon exchange, it will not couple directly to soft quarks. This procedure
will therefore only test the gluon emission sector of the quark helicity evolution equations, but this is precisely what
is needed to verify the evolution equations in the large-N

c

limit.

As in Eq. (55), we first expand the gauge fields into classical and quantum components, both in the Wilson lines
and in the explicit operator insertion. We then keep the first quantum correction to the classical background by
contracting two of the quantum fields to form a quantum propagator in the background of the classical fields.4 We
may distinguish the following classes of contractions shown diagrammatically in Fig. 2: “polarized ladder” emissions
(I and I0) in which a polarized gluon is emitted and absorbed by line 1; “polarized non-ladder” emissions (II and II0)
in which a polarized gluon is exchanged between lines 1 and 0; and unpolarized gluon emissions (dubbed “eikonal” in

4 One may note a subtlety of this procedure: strictly, the fields must be time-ordered in order to apply Wick’s theorem and form
contractions. The fields entering the operators here are not time-ordered but rather all sit at x

+ = 0, which plays the role of time in
light-front quantization. Time ordering may be achieved by inserting a complete set of “out” states, as in [40], although the resulting
Schwinger-Keldysh ordering is still di↵erent from the forward-scattering time ordering implicit in the background field method. The
equivalence between these two time-ordered structures was verified in [58] up to next-to-leading order, which is more than su�cient
precision for our purposes here.
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IV. OPERATOR EVOLUTION EQUATIONS AT SMALL X

Having constructed the appropriate polarized dipole amplitudes for the dipole gluon helicity distribution (37)
and Weizsäcker-Williams gluon helicity distribution (52), we will now proceed to derive small-x evolution equations,
focusing on the dipole distribution. We will do this at the operator level using a procedure which is similar in spirit
(although di↵erent in gauge) to the background field method employed in [11].

Beginning with the operator definitions of the polarized Wilson lines and dipole amplitudes, we will separate the
gauge fields Aµ of the target into “classical” fields Aµ

cl

and “quantum” fields aµ:

Aµ(x) = Aµ

cl

(x) + aµ(x). (55)

This separation can be done using a rapidity regulator ⌘, such that the “fast” quantum fields have rapidities greater
than ⌘, while the “slow” classical fields have rapidities less than ⌘ and are e↵ectively frozen from the point of view
of the quantum fluctuations. (Here “greater” and “smaller” rapidities depend on the choice of a coordinate system,
and may be interchanged.) This is essentially the rapidity factorization approach used in [57], and the evolution
equations we will derive can be understood as renormalization group equations in the rapidity cuto↵ ⌘. The classical
fields of the target, being enhanced by the target density, will be resummed to all orders. These classical fields (in
the A� = 0 light-cone gauge) are localized in x� to a parametrically small window, which we choose to be centered
on the origin: x� 2 [�R�,+R�] ⇠ [� 1

p

+ ,+
1
p

+ ], with p+ the large momentum of the target. Although the classical

fields are Lorentz-contracted to a delta function at x� = 0, the quantum fields can extend far beyond the target; we
will calculate the first correction due to these quantum fields in perturbation theory.

As a warm-up exercise and as a cross-check of our previous work [9], we will first employ this method to rederive
the evolution equations for the polarized dipole amplitude (8) (or (22)) which governs the quark helicity distribution
at small x. We will then repeat this exercise to derive new evolution equations for the polarized dipole amplitude
(37) which governs the dipole gluon helicity distribution. We leave the corresponding evolution equations for the
Weizsäcker-Williams gluon helicity distribution for future work, although we note that the small-x asymptotics of
both gluon helicity distributions must coincide.

A. Evolution of the Polarized Dipole Operator For Quark Helicity

We begin with the polarized dipole amplitude for the quark helicity distribution Eq. (8), using the explicit operator
form (21) for the polarized Wilson line (cf. Eq. (22)):
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⌧
tr
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(zs). (56)

Because this operator contains only t-channel gluon exchange, it will not couple directly to soft quarks. This procedure
will therefore only test the gluon emission sector of the quark helicity evolution equations, but this is precisely what
is needed to verify the evolution equations in the large-N

c

limit.

As in Eq. (55), we first expand the gauge fields into classical and quantum components, both in the Wilson lines
and in the explicit operator insertion. We then keep the first quantum correction to the classical background by
contracting two of the quantum fields to form a quantum propagator in the background of the classical fields.4 We
may distinguish the following classes of contractions shown diagrammatically in Fig. 2: “polarized ladder” emissions
(I and I0) in which a polarized gluon is emitted and absorbed by line 1; “polarized non-ladder” emissions (II and II0)
in which a polarized gluon is exchanged between lines 1 and 0; and unpolarized gluon emissions (dubbed “eikonal” in

4 One may note a subtlety of this procedure: strictly, the fields must be time-ordered in order to apply Wick’s theorem and form
contractions. The fields entering the operators here are not time-ordered but rather all sit at x

+ = 0, which plays the role of time in
light-front quantization. Time ordering may be achieved by inserting a complete set of “out” states, as in [40], although the resulting
Schwinger-Keldysh ordering is still di↵erent from the forward-scattering time ordering implicit in the background field method. The
equivalence between these two time-ordered structures was verified in [58] up to next-to-leading order, which is more than su�cient
precision for our purposes here.

Ø RG evolution in rapidity regulator

Ø Expand to lowest order in quantum fields
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Fig. 2). As visualized in Fig. 2, these contractions are
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cl

(x�
1 , x1) V 1[x

�
1 ,1]

i
. (57d)

Consider first the contraction I. Expanding the Wilson line V1[x
�
1 ,1] to first order in the quantum field, we have
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After forming the contraction of these two quantum fields, we set aµ = 0 in the rest of the Wilson lines, such that
only the classical background fields contribute. Since these classical fields are localized at x� = 0 we replace the
remaining semi-infinite Wilson lines by the fully infinite ones: this is in accordance with the standard calculation in
the shock wave background [11]. The contraction between the operator insertion aja? and the semi-infinite Wilson line
V1[x

�
1 ,1] explicitly requires x�

2 > x�
1 , but in principle there are contributions from x�

1 < x�
2 < 0 and 0 < x�

1 < x�
2

in addition to the x�
1 < 0 < x�

2 written here. We neglect these sub-eikonal virtual diagrams, since then the antiquark
would again need to scatter in the classical field in a spin-dependent way, making them further energy suppressed.
Thus only the x�

1 < 0 < x�
2 “real” diagram shown in Fig. 2 contributes. Similarly, only the diagram in which the

radiated gluon scatters in a spin-dependent way is capable of receiving logarithmic enhancement at small x.
The contraction in Eq. (58) is the gluon propagator from the sub-eikonal emission vertex to the Wilson line in the

background of the classical fields. In general, we can write it as a free propagator from the emission vertex to the
shock wave, a Wilson line for the interaction with the shock wave, and another free propagator to the absorption
vertex:
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Consider first the contraction I. Expanding the Wilson line V1[x
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1 ,1] to first order in the quantum field, we have
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After forming the contraction of these two quantum fields, we set aµ = 0 in the rest of the Wilson lines, such that
only the classical background fields contribute. Since these classical fields are localized at x� = 0 we replace the
remaining semi-infinite Wilson lines by the fully infinite ones: this is in accordance with the standard calculation in
the shock wave background [11]. The contraction between the operator insertion aja? and the semi-infinite Wilson line
V1[x
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1 ,1] explicitly requires x�

2 > x�
1 , but in principle there are contributions from x�

1 < x�
2 < 0 and 0 < x�

1 < x�
2

in addition to the x�
1 < 0 < x�

2 written here. We neglect these sub-eikonal virtual diagrams, since then the antiquark
would again need to scatter in the classical field in a spin-dependent way, making them further energy suppressed.
Thus only the x�

1 < 0 < x�
2 “real” diagram shown in Fig. 2 contributes. Similarly, only the diagram in which the

radiated gluon scatters in a spin-dependent way is capable of receiving logarithmic enhancement at small x.
The contraction in Eq. (58) is the gluon propagator from the sub-eikonal emission vertex to the Wilson line in the

background of the classical fields. In general, we can write it as a free propagator from the emission vertex to the
shock wave, a Wilson line for the interaction with the shock wave, and another free propagator to the absorption
vertex:
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Consider first the contraction I. Expanding the Wilson line V1[x
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After forming the contraction of these two quantum fields, we set aµ = 0 in the rest of the Wilson lines, such that
only the classical background fields contribute. Since these classical fields are localized at x� = 0 we replace the
remaining semi-infinite Wilson lines by the fully infinite ones: this is in accordance with the standard calculation in
the shock wave background [11]. The contraction between the operator insertion aja? and the semi-infinite Wilson line
V1[x

�
1 ,1] explicitly requires x�

2 > x�
1 , but in principle there are contributions from x�

1 < x�
2 < 0 and 0 < x�

1 < x�
2

in addition to the x�
1 < 0 < x�

2 written here. We neglect these sub-eikonal virtual diagrams, since then the antiquark
would again need to scatter in the classical field in a spin-dependent way, making them further energy suppressed.
Thus only the x�

1 < 0 < x�
2 “real” diagram shown in Fig. 2 contributes. Similarly, only the diagram in which the

radiated gluon scatters in a spin-dependent way is capable of receiving logarithmic enhancement at small x.
The contraction in Eq. (58) is the gluon propagator from the sub-eikonal emission vertex to the Wilson line in the

background of the classical fields. In general, we can write it as a free propagator from the emission vertex to the
shock wave, a Wilson line for the interaction with the shock wave, and another free propagator to the absorption
vertex:
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The Double-Logarithmic Phase Space
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• Double logarithmic phase space is more sensitive to 
details of the transverse plane
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• Double logarithmic phase space is more sensitive to 
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• Also restricts leading region to linear evolution

Ø Drive toward small distances

Ø Nonlinear (saturation) effects destroy transverse logarithm

Ø Double-log evolution is analogous to polarized BFKL
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• Even at large-Nc, leads to a system of coupled equations 
with auxiliary “neighbor dipole” functions
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Solution: the Quark Helicity Intercept
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• After a few units of evolution, 
an emergent scaling sets in:
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Gluon Helicity Operators

M. Sievert 15 / 21Small-x Helicity and the Proton Spin

• There are multiple gluon distributions, corresponding to 
different choices of gauge links

7

III. THE GLUON HELICITY TMDS AND NEW POLARIZED DIPOLE AMPLITUDE(S)

The gluon helicity TMD is defined 2 similarly to (5) as [51]
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) =
�2i

x P+

1

2

X

S

L

S
L

Z
d⇠� d2⇠

(2⇡)3
eixP

+
⇠

��ik·⇠ hP, S
L

| ✏ij
T

tr
⇥
F+i(0) U [0, ⇠] F+j(⇠) U 0[⇠, 0]

⇤ |P, S
L

i
⇠

+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write
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We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:
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This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives
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where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving
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2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
1

2

X
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�) e�ik·(⇠�⇣)

⇥ hP, S
L

| ✏ij
T

tr
h
F+i(⇣) U [+][⇣, ⇠] F+j(⇠) U [�][⇠, ⇣]

i
|P, S

L

i
⇣

+=⇠

+=0 . (25)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3
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iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
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⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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III. THE GLUON HELICITY TMDS AND NEW POLARIZED DIPOLE AMPLITUDE(S)

The gluon helicity TMD is defined 2 similarly to (5) as [51]

gG1L(x, k
2
T

) =
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F+i(0) U [0, ⇠] F+j(⇠) U 0[⇠, 0]

⇤ |P, S
L

i
⇠

+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2

64ig
y

�Z

+1

dz�A+(0+, z�, y)

3
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dz� A+(0+, z�, x)

3

5 (24a)

U [�][y, x] ⌘ P exp

2
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dz�A+(0+, z�, y)
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5 . (24b)

(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
1

2

X

S
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S
L

Z
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i
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+=⇠

+=0 . (25)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)
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h
F+i(⇣) U [+][⇣, ⇠] F+j(⇠) U [�][⇠, ⇣]

iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)

⇥ ✏ij
T

D
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[�1, ⇣�] F+i(⇣) V
⇣

[⇣�,+1] V
⇠

[+1, ⇠�] F+j(⇠) V
⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]

gG1L(x, k
2
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) =
�2i
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+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2

64ig
y
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+1

dz�A+(0+, z�, y)

3

75P exp
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4�ig
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3

5 (24a)

U [�][y, x] ⌘ P exp

2
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
1

2

X

S

L

S
L
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F+i(⇣) U [+][⇣, ⇠] F+j(⇠) U [�][⇠, ⇣]

i
|P, S

L

i
⇣

+=⇠

+=0 . (25)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3
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iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i
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1
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, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]
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2
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) =
�2i

x P+

1

2

X

S

L

S
L

Z
d⇠� d2⇠

(2⇡)3
eixP

+
⇠

��ik·⇠ hP, S
L

| ✏ij
T

tr
⇥
F+i(0) U [0, ⇠] F+j(⇠) U 0[⇠, 0]

⇤ |P, S
L

i
⇠

+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2
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5 (24a)
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i
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We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
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d2b db� ⇢(b, b�) hp, b, S
L
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L

i ⌘ h· · · i
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L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives
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, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip
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) =
�4i
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, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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III. THE GLUON HELICITY TMDS AND NEW POLARIZED DIPOLE AMPLITUDE(S)

The gluon helicity TMD is defined 2 similarly to (5) as [51]
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For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip
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We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1
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. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives
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, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)

⇥ ✏ij
T

D
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h
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⇣

[�1, ⇣�] F+i(⇣) V
⇣

[⇣�,+1] V
⇠

[+1, ⇠�] F+j(⇠) V
⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]

gG1L(x, k
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) =
�2i
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F+i(0) U [0, ⇠] F+j(⇠) U 0[⇠, 0]

⇤ |P, S
L

i
⇠

+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2

64ig
y

�Z

+1

dz�A+(0+, z�, y)

3

75P exp

2

4�ig
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3

5 (24a)

U [�][y, x] ⌘ P exp

2
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3

5 . (24b)

(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
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2
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F+i(⇣) U [+][⇣, ⇠] F+j(⇠) U [�][⇠, ⇣]

i
|P, S

L

i
⇣

+=⇠

+=0 . (25)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
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) =
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x

1
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iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3
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⇣

[⇣�,+1] V
⇠

[+1, ⇠�] F+j(⇠) V
⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]

gG1L(x, k
2
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) =
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+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2

64ig
y

�Z

+1

dz�A+(0+, z�, y)

3

75P exp

2
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5 (24a)

U [�][y, x] ⌘ P exp

2
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5 . (24b)

(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
1

2
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+=⇠

+=0 . (25)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)
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iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP
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⇣
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⇠
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⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]

gG1L(x, k
2
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) =
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⇤ |P, S
L

i
⇠

+=0 . (23)

For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2

64ig
y
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dz�A+(0+, z�, y)

3
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5 (24a)

U [�][y, x] ⌘ P exp
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
1

2
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We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
T

) =
�4i

x

1
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iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3
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⇠
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⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]
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For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with

U [+][y, x] ⌘ P exp

2
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =

R
d2x dx� and shift the operators in

the matrix element to write

gGdip

1L (x, k2
T

) =
�2i
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We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L
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i ⌘ h· · · i
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. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives
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) =
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, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
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) =
�4i
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, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].
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The gluon helicity TMD is defined 2 similarly to (5) as [51]
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For gluon TMD distributions, the field strength operators are connected by two fundamental gauge links U , U 0 which
may separately be either future-pointing ([+]) or past-pointing ([�]), with
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(The minus sign in the middle exponent in both equations (24) is due to the metric.) Of particular interest are the
“dipole distribution” gGdip

1L for which one is future pointing and the other is past pointing, U = U [+] , U 0 = U [�], and
the “Weizsäcker-Williams distribution” gGWW

1L for which both are future pointing, U = U [+] , U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (23) with
the appropriate gauge links, we multiply and divide by a volume factor V � =
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1L (x, k2
T

) =
�2i

x P+V �
1

(2⇡)3
1

2

X

S

L

S
L

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)

⇥ hP, S
L

| ✏ij
T

tr
h
F+i(⇣) U [+][⇣, ⇠] F+j(⇠) U [�][⇠, ⇣]

i
|P, S

L

i
⇣

+=⇠

+=0 . (25)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:

1

2P+V � hP, S
L

| · · · |P, S
L

i =
Z

d2b db� ⇢(b, b�) hp, b, S
L

| · · · |p, b, S
L

i ⌘ h· · · i
P,S

L

. (26)

This procedure is standard in the color-glass-condensate framework and is used to match the “unintegrated gluon
distribution” and the gluon TMD fg

1 in the unpolarized sector [40, 52]; it is also similar to the calculation of the
TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD
gives

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)

⇥
D
✏ij
T

tr
h
F+i(⇣) U [+][⇣, ⇠] F+j(⇠) U [�][⇠, ⇣]

iE
, (27)

where we have again put S
L

= +1 for simplicity and dropped the P, S
L

subscript o↵ the angle brackets for brevity.
To go further, we need to specify a gauge; we will work in the A� = 0 light-cone gauge, which is equivalent to the

covariant gauge in the quasi-classical approximation and is also convenient for including logarithmic small-x evolution.
In this gauge, the target field is localized in x� such that the transverse segments of the staple-shaped gauge links
U [±] at x� = ±1 do not contribute, leaving

gGdip

1L (x, k2
T

) =
�4i

x

1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ eixP

+ (⇠��⇣

�) e�ik·(⇠�⇣)

⇥ ✏ij
T

D
tr
h
V
⇣

[�1, ⇣�] F+i(⇣) V
⇣

[⇣�,+1] V
⇠

[+1, ⇠�] F+j(⇠) V
⇠

[⇠�,�1]
iE

, (28)

2 Note the di↵ering normalizations and conventions, e.g. Refs. [40, 48–51].

eik·⇠
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where, for brevity, we have also dropped the explicit integration limits from the infinite unpolarized Wilson lines.
Swapping ⇣ $ ⇠ in the last term generates a minus sign and makes the two terms in braces complex conjugates of
one another. Relabeling the dummy integration variables ⇣ and ⇠ as x1 and x0, respectively, and changing variables

to d2x0 d
2x1 = d2x10 d

2b10 with b10 ⌘ 1
2 (x1 + x0) the impact parameter, we can write

gGdip

1L (x, k2
T

) =
�4i

g2(2⇡)3

Z
d2x10 d

2b10 e+ik·x10 ki?✏
ij

T

(D
tr
h
V0 (V

pol †
1 )j?

iE
+ c.c.

)
. (36)

Defining another dipole-like polarized operator

Gi

10(zs) ⌘
1

2N
c

D
tr
h
V0(V

pol †
1 )i?

i
+ c.c.

E
(zs) (37)

we rewrite the dipole gluon helicity TMD as

gGdip

1L (x, k2
T

) =
�8iN

c

g2(2⇡)3

Z
d2x10 e

ik·x10 ki?✏
ij

T

Z
d2b10 G

j

10(zs =
Q

2

x

)

�
. (38)

The dipole gluon helicity TMD is related to an operator which is, surprisingly, di↵erent from the polarized dipole
amplitude in Eq. (22). This is very di↵erent from the situation with the unpolarized gluon TMDs for which the dipole
gluon TMD was related to the (unpolarized adjoint) dipole scattering amplitude on the target proton or nucleus [40].
This relation gave rise to the “dipole” designation of this TMD. Here we see that this relation is not universal and is
not valid for the dipole gluon helicity TMD, therefore putting the designation in question as well.

After the integration over all impact parameters, the new polarized dipole amplitude is a vector-valued function of
x10 alone, allowing us to write the decomposition

Z
d2b10 G

i

10(zs) = (x10)
i

? G1(x
2
10, zs) + ✏ij

T

(x10)
j

? G2(x
2
10, zs). (39)

By further writing (x10)i? as a derivative �i @

@k

i

?
on the Fourier factor, we see that the scalar function G1 does not

contribute to the dipole gluon helicity TMD, leaving only

gGdip

1L (x, k2
T

) =
8iN

c

g2(2⇡)3

Z
d2x10 e

ik·x10 k · x10 G2(x
2
10, zs =

Q

2

x

)

=
N

c

2⇡4↵
s

k2
T

@

@k2
T

Z
d2x10 e

ik·x10 G2(x
2
10, zs =

Q

2

x

)

�
. (40)

For future purposes, it is also useful to convert the derivatives back into coordinate space, writing

gGdip

1L (x, k2
T

) =
1

↵
s

8⇡4

Z
d2x0 d

2x1 e
ik·x10 ✏ij

T

*
tr

"
(V pol

1 )i?

 
@

@(x0)
j

?
V †
0

!#
+ c.c.

+

=
�N

c

↵
s

2⇡4

Z
d2x10 e

ik·x10


1 + x2

10
@

@x2
10

�
G2(x

2
10, zs =

Q

2

x

). (41)

We have thus expressed the dipole gluon helicity TMD in terms of a polarized dipole operator; Eqs. (40) and (41)
should be compared with Eq. (6) from the quark helicity TMD. Unexpectedly, however, the polarized dipole operator
(37) which determines the dipole gluon helicity TMD is di↵erent from the polarized dipole amplitude (22) which
determines the quark helicity TMD. Comparing the underlying polarized Wilson lines, we see that the quark case
(21) is sensitive to a local derivative r⇥A(x�) reflecting spin-dependent coupling at some point in the propagation
through the target. On the other hand, the gluon case (36) is sensitive to a total derivative k ⇥ V pol ! r ⇥ V pol

reflecting an overall circular polarization which remains after the entire interaction with the target. In principle, it
would seem that quark helicity and gluon helicity are very di↵erent quantities, with the gluon helicity requiring not
only that a spin-dependent scattering take place but also that the circular-polarized structure survive the rest of the
rescattering. We will thus need to derive new evolution equations analogous to Eq. (12) for the new polarized dipole
amplitude G2 in order to determine the small-x asymptotics of the dipole gluon helicity distribution.
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where we have used the cyclicity of the color trace. For the unpolarized gluon distribution, it is su�cient to replace
the field-strength tensors by their eikonal approximations, F+i ⇡ �@i

?A
+, but since the gluon helicity distribution

contains a sub-eikonal contribution, we must expand the product of field-strength tensors to the first non-vanishing
sub-eikonal order:

F+i(⇣) · · ·F+j(⇠) =
⇣
@+Ai

?(⇣)� @iA+(⇣)� ig [A+(⇣) , Ai

?(⇣)]
⌘
· · ·
⇣
@+Aj

?(⇠)� @jA+(⇠)� ig [A+(⇠) , Aj

?(⇠)]
⌘

(29)

⇡
✓

@

@⇣�
Ai

?(⇣)� ig [A+(⇣) , Ai

?(⇣)]

◆
· · ·
 

@

@⇠j?
A+(⇠)

!
+

✓
@

@⇣i?
A+(⇣)

◆
· · ·
✓

@

@⇠�
Aj

?(⇠)� ig [A+(⇠) , Aj

?(⇠)]

◆
.

We next convert the sub-eikonal part of the field-strength tensor F+i(⇣) into a total derivative,

V
⇣

[�1, ⇣�]

✓
@

@⇣�
Ai

?(⇣)� ig[A+(⇣) , Ai

?(⇣)]

◆
V
⇣

[⇣�,+1] =
@

@⇣�

⇣
V
⇣

[�1, ⇣�]Ai

?(⇣) V⇣

[⇣�,+1]
⌘
, (30)

which can then be integrated by parts to act on the Fourier factor and generate a net factor of +ixP+. In the same
way, the sub-eikonal part of the F+j(⇠) field-strength tensor can be converted into a net factor of �ixP+ and the

operator Aj

?(⇠). After taking these derivatives, we can safely set eixP
+(⇠��⇣

�) ⇡ 1 (thus neglecting higher powers of
x ⌧ 1), giving

gGdip

1L (x, k2
T

) = 4P+ 1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ e�ik·(⇠�⇣) ✏ij

T

⇥
(*

tr

"
V
⇣

[�1, ⇣�]Ai(⇣) V
⇣

[⇣�,+1] V
⇠

[+1, ⇠�]

 
@

@⇠j?
A+(⇠)

!
V
⇠

[⇠�,�1]

#+

�
⌧
tr


V
⇣

[�1, ⇣�]

✓
@

@⇣i?
A+(⇣)

◆
V
⇣

[⇣�,+1] V
⇠

[+1, ⇠�]Aj(⇠) V
⇠

[⇠�,�1]

��)
. (31)

We can now similarly convert the eikonal parts of the field-strength tensors into total derivatives,
1Z

�1

d⇣� V
⇣

[�1, ⇣�]

✓
@

@⇣i?
A+(⇣)

◆
V
⇣

[⇣�,+1] =
i

g

@

@⇣i?
V
⇣

[�1,+1], (32)

which absorbs the d⇣� integral from the TMD and can be integrated by parts to generate a net factor of 1
g

ki?:

gGdip

1L (x, k2
T

) =
�4

g(2⇡)3
P+

Z
d2⇠ d2⇣ e�ik·(⇠�⇣) ki?✏

ij

T

⇥
(⌧

tr

✓Z
d⇣� V

⇣

[�1, ⇣�]Aj(⇣) V
⇣

[⇣�,+1]

◆
V
⇠

[+1,�1]

��

+

⌧
tr


V
⇣

[�1,+1]

✓Z
d⇠� V

⇠

[+1, ⇠�]Aj(⇠) V
⇠

[⇠�,�1]

◆��)
, (33)

where we also swapped i $ j in the first term.
We observe that the sub-eikonal gluon vertex enters in a form similar to Eq. (10), but with an explicit transverse

index. Defining the analogous polarized Wilson line (one may call it the polarized Wilson line of the second kind to
distinguish it from Eq. (21))

(V pol

x

)i? ⌘
+1Z

�1

dx� V
x

[+1, x�]
�
ig P+ Ai

?(x)
�
V
x

[x�,�1]

=
1

2

+1Z

�1

dx� V
x

[+1, x�]
�
ig Āi

?(x)
�
V
x

[x�,�1] (34)

allows us to write the dipole gluon helicity TMD in a more compact form (compare this with a very similar Eq. (47)
in [53])

gGdip

1L (x, k2
T

) =
�4i

g2(2⇡)3

Z
d2⇠ d2⇣ e�ik·(⇠�⇣) ki?✏

ij

T

(D
tr
h
V
⇠

(V pol †
⇣

)j?

iE
�
D
tr
h
(V pol

⇠

)j? V †
⇣

iE)
, (35)

• Dipole gluon helicity:
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• Weizsäcker-Williams gluon helicity:

9

where, for brevity, we have also dropped the explicit integration limits from the infinite unpolarized Wilson lines.
Swapping ⇣ $ ⇠ in the last term generates a minus sign and makes the two terms in braces complex conjugates of
one another. Relabeling the dummy integration variables ⇣ and ⇠ as x1 and x0, respectively, and changing variables

to d2x0 d
2x1 = d2x10 d

2b10 with b10 ⌘ 1
2 (x1 + x0) the impact parameter, we can write

gGdip

1L (x, k2
T

) =
�4i

g2(2⇡)3

Z
d2x10 d

2b10 e+ik·x10 ki?✏
ij

T

(D
tr
h
V0 (V

pol †
1 )j?

iE
+ c.c.

)
. (36)

Defining another dipole-like polarized operator

Gi

10(zs) ⌘
1

2N
c

D
tr
h
V0(V

pol †
1 )i?

i
+ c.c.

E
(zs) (37)

we rewrite the dipole gluon helicity TMD as

gGdip

1L (x, k2
T

) =
�8iN

c

g2(2⇡)3

Z
d2x10 e

ik·x10 ki?✏
ij

T

Z
d2b10 G

j

10(zs =
Q

2

x

)

�
. (38)

The dipole gluon helicity TMD is related to an operator which is, surprisingly, di↵erent from the polarized dipole
amplitude in Eq. (22). This is very di↵erent from the situation with the unpolarized gluon TMDs for which the dipole
gluon TMD was related to the (unpolarized adjoint) dipole scattering amplitude on the target proton or nucleus [40].
This relation gave rise to the “dipole” designation of this TMD. Here we see that this relation is not universal and is
not valid for the dipole gluon helicity TMD, therefore putting the designation in question as well.

After the integration over all impact parameters, the new polarized dipole amplitude is a vector-valued function of
x10 alone, allowing us to write the decomposition

Z
d2b10 G

i

10(zs) = (x10)
i

? G1(x
2
10, zs) + ✏ij

T

(x10)
j

? G2(x
2
10, zs). (39)

By further writing (x10)i? as a derivative �i @

@k

i

?
on the Fourier factor, we see that the scalar function G1 does not

contribute to the dipole gluon helicity TMD, leaving only

gGdip

1L (x, k2
T

) =
8iN

c

g2(2⇡)3

Z
d2x10 e

ik·x10 k · x10 G2(x
2
10, zs =

Q

2

x

)

=
N

c

2⇡4↵
s

k2
T

@

@k2
T

Z
d2x10 e

ik·x10 G2(x
2
10, zs =

Q

2

x

)

�
. (40)

For future purposes, it is also useful to convert the derivatives back into coordinate space, writing

gGdip

1L (x, k2
T

) =
1

↵
s

8⇡4

Z
d2x0 d

2x1 e
ik·x10 ✏ij

T

*
tr

"
(V pol

1 )i?

 
@

@(x0)
j

?
V †
0

!#
+ c.c.

+

=
�N

c

↵
s

2⇡4

Z
d2x10 e

ik·x10


1 + x2

10
@

@x2
10

�
G2(x

2
10, zs =

Q

2

x

). (41)

We have thus expressed the dipole gluon helicity TMD in terms of a polarized dipole operator; Eqs. (40) and (41)
should be compared with Eq. (6) from the quark helicity TMD. Unexpectedly, however, the polarized dipole operator
(37) which determines the dipole gluon helicity TMD is di↵erent from the polarized dipole amplitude (22) which
determines the quark helicity TMD. Comparing the underlying polarized Wilson lines, we see that the quark case
(21) is sensitive to a local derivative r⇥A(x�) reflecting spin-dependent coupling at some point in the propagation
through the target. On the other hand, the gluon case (36) is sensitive to a total derivative k ⇥ V pol ! r ⇥ V pol

reflecting an overall circular polarization which remains after the entire interaction with the target. In principle, it
would seem that quark helicity and gluon helicity are very di↵erent quantities, with the gluon helicity requiring not
only that a spin-dependent scattering take place but also that the circular-polarized structure survive the rest of the
rescattering. We will thus need to derive new evolution equations analogous to Eq. (12) for the new polarized dipole
amplitude G2 in order to determine the small-x asymptotics of the dipole gluon helicity distribution.
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and
1Z

�1

d⇠� eixP
+
⇠

�

 
@

@⇠j?
V
⇠

[+1, ⇠�]

!
V
⇠

[⇠�,+1] =

=

+1Z

�1

d⇠� eixP
+
⇠

�
+1Z

⇠

�

dz� V
⇠

[+1, z�]

 
ig

@

@⇠j?
A+(0+, z�, ⇠)

!
V
⇠

[z�,+1]

=

+1Z

�1

dz�

2

64
z

�Z

�1

d⇠� eixP
+
⇠

�

3

75 V
⇠

[+1, z�]

 
ig

@

@⇠j?
A+(0+, z�, ⇠)

!
V
⇠

[z�,+1]

⇡ �i

xP+

+1Z

�1

dz� V
⇠

[+1, z�]

 
ig

@

@⇠j?
A+(0+, z�, ⇠)

!
V
⇠

[z�,+1]

=
�i

xP+

 
@

@⇠j?
V
⇠

!
V †
⇠

=
+i

xP+
V
⇠

 
@

@⇠j?
V †
⇠

!
, (49)

where we have expanded the exponent to the first non-vanishing term. Inserting all of these expressions into Eq. (43)
gives

gGWW

1L (x, k2
T

) =
4

g2(2⇡)3

Z
d2⇠ d2⇣ e�ik·(⇠�⇣) ✏ij

T

⇥
*
tr

"
(V pol

⇣

)i? V †
⇣

V
⇠

 
@

@⇠j?
V †
⇠

!#
� tr

✓
@

@⇣i?
V
⇣

◆
V †
⇣

V
⇠

(V pol †
⇠

)j?

�+
. (50)

Swapping ⇣ $ ⇠ and i $ j in the second term makes it the complex conjugate of the first term. Relabeling the
dummy integration variables ⇣ and ⇠ as x1 and x0, respectively, and changing variables to d2x0 d

2x1 = d2x10 d
2b10

with b10 = 1
2 (x1 + x0) the impact parameter, we can write

gGWW

1L (x, k2
T

) =
4

g2(2⇡)3

Z
d2x10 d

2b10 e
ik·x10 ✏ij

T

*
tr

"
(V pol

1 )i? V †
1 V0

 
@

@(x0)
j

?
V †
0

!#
+ c.c.

+
. (51)

It seems that the WW gluon helicity TMD is determined by yet another polarized dipole-like operator

Gji

10(zs) ⌘
�1

2N
c

*
tr

"
(V pol

1 )i? V †
1 V0

 
@

@(x0)
j

?
V †
0

!#
+ c.c.

+
(zs) (52)

which is a rank-2 tensor in the transverse plane. After integration over impact parameters, we can correspondingly
define a scalar function

G3(x
2
10, zs) ⌘

Z
d2b10 ✏

ij

T

Gji

10(zs)

=
�1

2N
c

Z
d2b10 ✏

ij

T

*
tr

"
(V pol

1 )i? V †
1 V0

 
@

@(x0)
j

?
V †
0

!#
+ c.c.

+
(zs) (53)

in terms of which the WW gluon helicity TMD is written

gGWW

1L (x, k2
T

) =
�N

c

4⇡4↵
s

Z
d2x10 e

ik·x10 G3(x
2
10, zs =

Q

2

x

). (54)

We have now expressed the Weizsäcker-Williams gluon helicity TMD as well in terms of a yet another new polarized
dipole operator; Eq. (54) for the WW gluon helicity distribution is directly comparable to Eq. (40) for the dipole gluon
helicity distribution and Eq. (6) for the quark helicity distribution. The polarized dipole operator (52) for the WW
gluon helicity distribution is di↵erent still from both the operator (37) for the dipole gluon helicity distribution and
the amplitude (22) for the quark helicity distribution. Although the WW gluon helicity distribution is built from the
same polarized Wilson line (34) as the dipole gluon helicity distribution, it is incorporated into a more complicated
operator due to the future-pointing structure of the WW gauge links: this feature is similar to the unpolarized WW
gluon TMD, which is related to the color quadrupole operator instead of a dipole [40, 42].
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where we have used the cyclicity of the color trace. For the unpolarized gluon distribution, it is su�cient to replace
the field-strength tensors by their eikonal approximations, F+i ⇡ �@i

?A
+, but since the gluon helicity distribution

contains a sub-eikonal contribution, we must expand the product of field-strength tensors to the first non-vanishing
sub-eikonal order:

F+i(⇣) · · ·F+j(⇠) =
⇣
@+Ai

?(⇣)� @iA+(⇣)� ig [A+(⇣) , Ai

?(⇣)]
⌘
· · ·
⇣
@+Aj

?(⇠)� @jA+(⇠)� ig [A+(⇠) , Aj

?(⇠)]
⌘

(29)

⇡
✓

@

@⇣�
Ai

?(⇣)� ig [A+(⇣) , Ai

?(⇣)]

◆
· · ·
 

@

@⇠j?
A+(⇠)

!
+

✓
@

@⇣i?
A+(⇣)

◆
· · ·
✓

@

@⇠�
Aj

?(⇠)� ig [A+(⇠) , Aj

?(⇠)]

◆
.

We next convert the sub-eikonal part of the field-strength tensor F+i(⇣) into a total derivative,

V
⇣

[�1, ⇣�]

✓
@

@⇣�
Ai

?(⇣)� ig[A+(⇣) , Ai

?(⇣)]

◆
V
⇣

[⇣�,+1] =
@

@⇣�

⇣
V
⇣

[�1, ⇣�]Ai

?(⇣) V⇣

[⇣�,+1]
⌘
, (30)

which can then be integrated by parts to act on the Fourier factor and generate a net factor of +ixP+. In the same
way, the sub-eikonal part of the F+j(⇠) field-strength tensor can be converted into a net factor of �ixP+ and the

operator Aj

?(⇠). After taking these derivatives, we can safely set eixP
+(⇠��⇣

�) ⇡ 1 (thus neglecting higher powers of
x ⌧ 1), giving

gGdip

1L (x, k2
T

) = 4P+ 1

(2⇡)3

Z
d⇠� d2⇠ d⇣� d2⇣ e�ik·(⇠�⇣) ✏ij

T

⇥
(*

tr

"
V
⇣

[�1, ⇣�]Ai(⇣) V
⇣

[⇣�,+1] V
⇠

[+1, ⇠�]

 
@

@⇠j?
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We can now similarly convert the eikonal parts of the field-strength tensors into total derivatives,
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which absorbs the d⇣� integral from the TMD and can be integrated by parts to generate a net factor of 1
g

ki?:

gGdip

1L (x, k2
T

) =
�4

g(2⇡)3
P+

Z
d2⇠ d2⇣ e�ik·(⇠�⇣) ki?✏

ij

T

⇥
(⌧

tr

✓Z
d⇣� V

⇣

[�1, ⇣�]Aj(⇣) V
⇣

[⇣�,+1]

◆
V
⇠

[+1,�1]

��

+

⌧
tr


V
⇣

[�1,+1]

✓Z
d⇠� V

⇠

[+1, ⇠�]Aj(⇠) V
⇠

[⇠�,�1]

◆��)
, (33)

where we also swapped i $ j in the first term.
We observe that the sub-eikonal gluon vertex enters in a form similar to Eq. (10), but with an explicit transverse

index. Defining the analogous polarized Wilson line (one may call it the polarized Wilson line of the second kind to
distinguish it from Eq. (21))

(V pol

x
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?(x)
�
V
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allows us to write the dipole gluon helicity TMD in a more compact form (compare this with a very similar Eq. (47)
in [53])
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, (35)

• Dipole gluon helicity:
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• Weizsäcker-Williams gluon helicity:

9

where, for brevity, we have also dropped the explicit integration limits from the infinite unpolarized Wilson lines.
Swapping ⇣ $ ⇠ in the last term generates a minus sign and makes the two terms in braces complex conjugates of
one another. Relabeling the dummy integration variables ⇣ and ⇠ as x1 and x0, respectively, and changing variables

to d2x0 d
2x1 = d2x10 d

2b10 with b10 ⌘ 1
2 (x1 + x0) the impact parameter, we can write
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Defining another dipole-like polarized operator
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E
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we rewrite the dipole gluon helicity TMD as
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The dipole gluon helicity TMD is related to an operator which is, surprisingly, di↵erent from the polarized dipole
amplitude in Eq. (22). This is very di↵erent from the situation with the unpolarized gluon TMDs for which the dipole
gluon TMD was related to the (unpolarized adjoint) dipole scattering amplitude on the target proton or nucleus [40].
This relation gave rise to the “dipole” designation of this TMD. Here we see that this relation is not universal and is
not valid for the dipole gluon helicity TMD, therefore putting the designation in question as well.

After the integration over all impact parameters, the new polarized dipole amplitude is a vector-valued function of
x10 alone, allowing us to write the decomposition
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By further writing (x10)i? as a derivative �i @

@k

i

?
on the Fourier factor, we see that the scalar function G1 does not

contribute to the dipole gluon helicity TMD, leaving only
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For future purposes, it is also useful to convert the derivatives back into coordinate space, writing

gGdip

1L (x, k2
T

) =
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). (41)

We have thus expressed the dipole gluon helicity TMD in terms of a polarized dipole operator; Eqs. (40) and (41)
should be compared with Eq. (6) from the quark helicity TMD. Unexpectedly, however, the polarized dipole operator
(37) which determines the dipole gluon helicity TMD is di↵erent from the polarized dipole amplitude (22) which
determines the quark helicity TMD. Comparing the underlying polarized Wilson lines, we see that the quark case
(21) is sensitive to a local derivative r⇥A(x�) reflecting spin-dependent coupling at some point in the propagation
through the target. On the other hand, the gluon case (36) is sensitive to a total derivative k ⇥ V pol ! r ⇥ V pol

reflecting an overall circular polarization which remains after the entire interaction with the target. In principle, it
would seem that quark helicity and gluon helicity are very di↵erent quantities, with the gluon helicity requiring not
only that a spin-dependent scattering take place but also that the circular-polarized structure survive the rest of the
rescattering. We will thus need to derive new evolution equations analogous to Eq. (12) for the new polarized dipole
amplitude G2 in order to determine the small-x asymptotics of the dipole gluon helicity distribution.
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where we have expanded the exponent to the first non-vanishing term. Inserting all of these expressions into Eq. (43)
gives

gGWW

1L (x, k2
T

) =
4

g2(2⇡)3

Z
d2⇠ d2⇣ e�ik·(⇠�⇣) ✏ij

T

⇥
*
tr

"
(V pol

⇣

)i? V †
⇣

V
⇠

 
@

@⇠j?
V †
⇠

!#
� tr

✓
@

@⇣i?
V
⇣

◆
V †
⇣

V
⇠

(V pol †
⇠

)j?

�+
. (50)

Swapping ⇣ $ ⇠ and i $ j in the second term makes it the complex conjugate of the first term. Relabeling the
dummy integration variables ⇣ and ⇠ as x1 and x0, respectively, and changing variables to d2x0 d

2x1 = d2x10 d
2b10

with b10 = 1
2 (x1 + x0) the impact parameter, we can write
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It seems that the WW gluon helicity TMD is determined by yet another polarized dipole-like operator
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which is a rank-2 tensor in the transverse plane. After integration over impact parameters, we can correspondingly
define a scalar function
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in terms of which the WW gluon helicity TMD is written
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). (54)

We have now expressed the Weizsäcker-Williams gluon helicity TMD as well in terms of a yet another new polarized
dipole operator; Eq. (54) for the WW gluon helicity distribution is directly comparable to Eq. (40) for the dipole gluon
helicity distribution and Eq. (6) for the quark helicity distribution. The polarized dipole operator (52) for the WW
gluon helicity distribution is di↵erent still from both the operator (37) for the dipole gluon helicity distribution and
the amplitude (22) for the quark helicity distribution. Although the WW gluon helicity distribution is built from the
same polarized Wilson line (34) as the dipole gluon helicity distribution, it is incorporated into a more complicated
operator due to the future-pointing structure of the WW gauge links: this feature is similar to the unpolarized WW
gluon TMD, which is related to the color quadrupole operator instead of a dipole [40, 42].
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where we have used the cyclicity of the color trace. For the unpolarized gluon distribution, it is su�cient to replace
the field-strength tensors by their eikonal approximations, F+i ⇡ �@i

?A
+, but since the gluon helicity distribution

contains a sub-eikonal contribution, we must expand the product of field-strength tensors to the first non-vanishing
sub-eikonal order:
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We next convert the sub-eikonal part of the field-strength tensor F+i(⇣) into a total derivative,
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which can then be integrated by parts to act on the Fourier factor and generate a net factor of +ixP+. In the same
way, the sub-eikonal part of the F+j(⇠) field-strength tensor can be converted into a net factor of �ixP+ and the

operator Aj

?(⇠). After taking these derivatives, we can safely set eixP
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We can now similarly convert the eikonal parts of the field-strength tensors into total derivatives,
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which absorbs the d⇣� integral from the TMD and can be integrated by parts to generate a net factor of 1
g
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where we also swapped i $ j in the first term.
We observe that the sub-eikonal gluon vertex enters in a form similar to Eq. (10), but with an explicit transverse

index. Defining the analogous polarized Wilson line (one may call it the polarized Wilson line of the second kind to
distinguish it from Eq. (21))

(V pol

x

)i? ⌘
+1Z

�1

dx� V
x

[+1, x�]
�
ig P+ Ai

?(x)
�
V
x

[x�,�1]

=
1

2

+1Z

�1

dx� V
x

[+1, x�]
�
ig Āi
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allows us to write the dipole gluon helicity TMD in a more compact form (compare this with a very similar Eq. (47)
in [53])
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• Dipole gluon helicity:

• Requires azimuthal correlations to survive multiple scattering

Ø C.F. – Axial vector current for quark helicity

Ø It is possible for gluon polarization to get washed out
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• In this evolution, there is an external direction present
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Thus the calculation is reduced to finding the propagator (82). In analogy to Eq. (62), we write the propagator as
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With the propagator (85), it is straightforward to obtain the evolution kernels IV � V0:
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Including all these contributions, we can immediately write down the evolution equation for the polarized dipole
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Including all these contributions, we can immediately write down the evolution equation for the polarized dipole
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• In this evolution, there is an external direction present
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Thus the calculation is reduced to finding the propagator (82). In analogy to Eq. (62), we write the propagator as
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With the propagator (85), it is straightforward to obtain the evolution kernels IV � V0:
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The only other ingredient necessary is the unpolarized eikonal gluon contribution, which is identical to (69) except
for the replacement of the polarized Wilson lines V pol †
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Including all these contributions, we can immediately write down the evolution equation for the polarized dipole
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Including all these contributions, we can immediately write down the evolution equation for the polarized dipole
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With the propagator (85), it is straightforward to obtain the evolution kernels IV � V0:
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The only other ingredient necessary is the unpolarized eikonal gluon contribution, which is identical to (69) except
for the replacement of the polarized Wilson lines V pol †
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Including all these contributions, we can immediately write down the evolution equation for the polarized dipole

Ø Quark helicity evolution mixes into gluon helicity, but the 
transition is not double-logarithmic.
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Ø Mixes in quark helicity evolution
Ø Single-logarithmic transition
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• However, the initial conditions for gluon helicity are 
suppressed by a logarithm compared to quark helicity
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Ø One transition to quark helicity evolution is leading
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Ø Unpolarized small-x emissions are isotropic
Ø Real emissions wash out directional correlations
Ø Depletes gluon helicity during evolution
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29

The integral now is at most log-divergent in x21, and even that divergence is zero after the angular integrations.
Writing d2x2 = x21dx21d� we can eliminate the first term in parentheses after the angular averaging. 5 Angular
integration in the second term gives (see Eq. (A.14) of [47])
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Neglecting the constant compared to the logarithm and substituting our result back into Eq. (104) we arrive at
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This leaves the simplified equations (111) amenable to analytic solution, which we will pursue next.

B. High-Energy Asymptotics

To begin, it is convenient to rescale the functions G2 and �2 to eliminate the constants:
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which casts Eq. (111) into the form
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5 It appears important to first choose the integration variables for the whole integral, and then integrate both terms in parenthesis using
the same variables. If one simply discards the first term in parentheses, and writes d

2
x2 = x20dx20d�

0 for the second term, the result
appears to be IR divergent again due to an illegal variable shift in one of two divergent terms of an overall convergent integral.
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5 It appears important to first choose the integration variables for the whole integral, and then integrate both terms in parenthesis using
the same variables. If one simply discards the first term in parentheses, and writes d

2
x2 = x20dx20d�

0 for the second term, the result
appears to be IR divergent again due to an illegal variable shift in one of two divergent terms of an overall convergent integral.
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The integral now is at most log-divergent in x21, and even that divergence is zero after the angular integrations.
Writing d2x2 = x21dx21d� we can eliminate the first term in parentheses after the angular averaging. 5 Angular
integration in the second term gives (see Eq. (A.14) of [47])
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Neglecting the constant compared to the logarithm and substituting our result back into Eq. (104) we arrive at
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Employing Eq. (110) in Eqs. (98) to replace the terms containing �
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This leaves the simplified equations (111) amenable to analytic solution, which we will pursue next.

B. High-Energy Asymptotics

To begin, it is convenient to rescale the functions G2 and �2 to eliminate the constants:
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the solution Eq. (129a) into Eq. (41) yields the small-x asymptotics of the dipole gluon helicity distribution:
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with the gluon helicity intercept
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Strictly speaking, this intercept has been obtained by solving the small-x evolution equations (96) applicable to
the dipole gluon helicity distribution (41). The Weizsäcker-Williams gluon helicity distribution (51) is defined by a
di↵erent operator (52) than the dipole gluon helicity distribution (37), and in general will have di↵erent evolution
equations than (96). While we leave the derivation and solution of these evolution equations for future work, we note
that both the dipole and WW gluon helicity TMDs must give the same gluon helicity PDF �G when integrated over
all k

T

. Integrating Eqs. (41) and (51) over the transverse momentum to obtain the collinear gluon helicity distribution
�G, we confirm that both distributions reduce to a common operator, and that all three distributions possess the
same small-x asymptotics:
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We conclude that
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Thus, we see that the small-x asymptotics of these three distributions (�G, gGdip

1L , gGWW

1L ) – and, indeed, all possible
definitions of gluon helicity TMDs – are universal and governed by the gluon helicity intercept (131).

VI. PHENOMENOLOGY OF THE GLUON SPIN AT SMALL X

In this section we give an estimate for the gluon spin S
G

in (1) based on our gluon helicity intercept (131). The gluon
spin has been a topic of intense investigation, with only recent experiments showing that it can give a more substantial
fraction of the proton’s spin than once thought [61, 62]. Nevertheless, the estimates of S

G

are still plagued by the
lack of data below x = 0.05, which causes large uncertainties in this quantity (see, e.g., Ref. [63]), and is one of the
main motivations for the construction of an Electron-Ion Collider. However, we emphasize that once our theoretical
calculations of the gluon (and quark) helicity intercepts push beyond the current approximations and include, e.g.,
large-N

c

&N
f

, running coupling, and LLA corrections, one could use these results in future extractions of the already
existing data to provide strong constraints on the small-x behavior of the helicity PDFs, and, consequently, the
quark and gluon spin. (We mention that helicity PDFs have been extracted by several groups, e.g., DSSV [43, 64],
JAM [65–67], LSS [68–70], NNPDF [71, 72].)

In order to calculate S
G

, we need input for the gluon helicity PDF �G(x,Q2), and we focus here on the fit from
DSSV14 [43]. We proceed through a simple approach, which we also employed in Ref. [38] for an estimate of the
quark spin based on (3), and leave a more rigorous phenomenological study for future work. First, we attach a curve

�G̃(x,Q2) = N x�↵

G

h (with ↵G

h

given in (131)) to the DSSV14 result for �G(x,Q2) at a particular small-x point x0.
We fix the normalization N by requiring �G̃(x0, Q

2) = �G(x0, Q
2). Then we calculate the truncated integral

S
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]
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of the modified gluon helicity PDF

�G
mod

(x,Q2) ⌘ ✓(x� x0)�G(x,Q2) + ✓(x0 � x)�G̃(x,Q2) (135)
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• The small-x asymptotics of the hPDFs provide one 
small new input to the proton spin puzzle.

Ø But they are systematic and 
generalizeable (OAM?)

Ø Other sum rules of interest?  (Transversity / Tensor charge?)

• The intersection of spin and small-x challenges both paradigms

Ø Significant effects from small-x evolution
Ø Gluons don’t dominate, and dipoles aren’t independent
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