K^-/K^+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual photon energy

Ana S. Nunes (LIP-Lisbon, on behalf of the COMPASS Collaboration)

DIS 2018, 16-20 April 2018, Kobe, Japan

Acknowledgements:

FCT Fundação para a Ciência e a Tecnologia

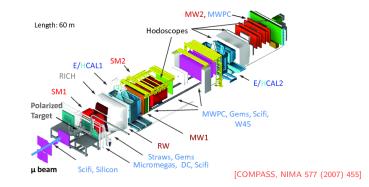
CERN/FIS-PAR/007/2017

Ana S. Nunes (LIP-Lisbon)

COMPASS at CERN

2 Motivation

4 Results and discussion


COMPASS @ CERN

[COmmon Muon Proton Apparatus for Structure and Spectroscopy]

- Ground level fixed target experiment at the SPS using a tertiary muon beam (μ[±]) or a secondary hadron beam (π[±], K[±], p)
- Collaboration of around 220 members from 13 countries and 24 institutions
- Data-taking started in 2002 \Rightarrow See also Bakur Parsamyan and Michela Chiosso's talks
- Future plans ⇒ See Barbara Badełek's talk

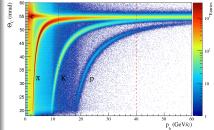
COMPASS spectrometer (2006)

- 160 GeV μ⁺ naturally polarised beam
 ⁶LiD, 1.2 m long, 3 cells, longitudinally polarised target
- Large acceptance, two staged spectrometer
- Tracking detectors in the 2 stages
- Particle identification: muon walls, RICH, calorimetry
- Hodoscope-based trigger (on scattered muon)

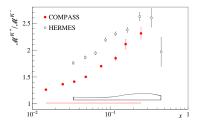
Hadron multiplicities in muon-nucleon scattering

Motivation

- Quark fragmentation functions (FFs) measure the probability of a given quark giving rise to a given hadron
- Quark fragmentation functions: fundamental non-perturbative, <u>universal</u>
- FFs are ingredients of global pQCD fits
- COMPASS data can give access to FFs $D_q^h(z, Q^2)$ via hadron multiplicities M^h in SIDIS:


$$\frac{dM^{h}(x,Q^{2},z)}{dz} \equiv \frac{d^{3}\sigma^{h}_{\text{DIS}}(x,Q^{2},z)/dx \, dQ^{2} \, dz}{d^{2}\sigma^{\text{DIS}}(x,Q^{2})/dx \, dQ^{2}}$$

$$\frac{dM^h(x,z,Q^2)}{dz} \stackrel{=}{\underset{\mathsf{LO}}{=}} \frac{\sum_q e_q^2 f_q(x,Q^2) D_q^h(z,Q^2)}{\sum_q e_q^2 f_q(x,Q^2)}$$


$$\begin{split} k_{\mu} &= (E_{\mu}, \mathbf{k}_{\mu}) \\ k'_{\mu} &= (E'_{\mu}, \mathbf{k}'_{\mu}) \\ P &= (M, 0) \\ q &= k_{\mu} - k'_{\mu} = (\nu, \mathbf{q}) \\ Q^2 &= -q^2 \\ \nu &= P \cdot q/M = E_{\mu} - E'_{\mu} \\ W^2 &= M^2 + 2M\nu - Q^2 \\ w^2 &= M^2 + 2M\nu - Q^2 \\ x &= Q^2/(2M\nu) \\ y &= \nu/E_{\mu} \\ z &= E_h/(E_{\mu} - E_{\mu'}) \end{split}$$

COMPASS RICH: Θ_C vs momentum

COMPASS previous results on multiplicities

- "Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target" [COMPASS, PLB 764 (2017) 001]
 - Well described by (N)LO pQCD
- "Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target" [COMPASS, PLB 767 (2017) 133]
 - Not well described by (N)LO pQCD, particularly at high z
 - Discrepancy between COMPASS and HERMES:

• "Transverse-momentum-dependent multiplicities of charged hadrons in muon-deuteron deep inelastic scattering" [COMPASS, PRD 97 (2018) 032006]

Expected values for $R_{\mathcal{K}} = M^{\mathcal{K}^-}/M^{\mathcal{K}^+}$

In LO:

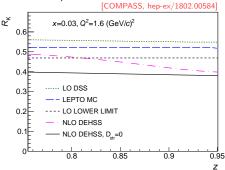
$$\frac{\mathrm{d}M^{\mathrm{h}}(x,Q^{2},z)}{\mathrm{d}z} = \frac{\sum_{q} e_{q}^{2} f_{q}(x,Q^{2}) D_{q}^{\mathrm{h}}(z,Q^{2})}{\sum_{q} e_{q}^{2} f_{q}(x,Q^{2})}$$

PDFs f_q : u, \overline{u} , d, \overline{d} , s, \overline{s}

 Assuming isospin and charge symmetry, equality of all unfavoured FFs and equality of favoured s and s FFs:

•
$$D_{fav} = D_u^{K^+} = D_{\bar{u}}^{K^-}$$

• $D_{unf} = D_{\bar{u}}^{K^+} = D_d^{K^+} = D_{\bar{d}}^{K^+} = D_s^{K^+}$ and their charge conjugates
• $D_{str} = D_{\bar{s}}^{K^+} = D_s^{K^-}$


• For an isoscalar target, in LO:

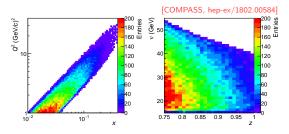
$$R_{\mathsf{K}}(x,Q^2,z) = \frac{\mathsf{d}M^{\mathsf{K}^-}(x,Q^2,z)/\mathsf{d}z}{\mathsf{d}M^{\mathsf{K}^+}(x,Q^2,z)/\mathsf{d}z} > \frac{\bar{\mathsf{u}} + \bar{\mathsf{d}}}{\mathsf{u} + \mathsf{d}}$$

(Neglecting D_{unf} and the terms with s and \bar{s} ; and noting that $D_{str} > D_{fav} > 0$ and $\bar{u}/u < 1$, $\bar{d}/d < 1$.)

Expected values for $R_{\kappa} = M^{\kappa^-}/M^{\kappa^+}$ (ctnd.)

(assuming usual assumptions of QCD)

• Curves: expected LO lower limit for R_K using LO MSTW08 PDFs, result from LEPTO and using Refs. 1-3 for x = 0.03 and $Q^2 = 1.6 (\text{GeV}/c)^2$

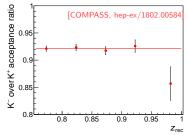

- (1) [D. de Florian, M. Stratmann and W. Vogelsang, Phys. Rev. D 57 (1998) 5811]
- (2) [D. de Florian, R. Sassot and M. Stratmann, Phys. Rev. D 75 (2007) 114010]
- (3) [G. Ingelman, A. Edin and J. Rathsman, Comput. Phys. Commun. 101 (1997) 108]

Multiplicity extraction

- The multiplicity extraction requires:
 - Data selection
 - Spectrometer acceptance and reconstruction efficiency correction
 - **③** RICH efficiency and purity correction
 - Orrection for decays of diffractively produced vector mesons
 - Orrection for decays of charm quark
 - Orrection for radiative effects

Data selection

- $\bullet\,$ Data taken in 2006 with 160 GeV μ^+ beam and $^6{\rm LiD}$ isoscalar target
- Reconstructed μ and μ' , $Q^2 > 1~({\rm GeV}/c)^2$, $W > 5~{\rm GeV}/c^2$, y > 0.1
- $z_{rec} > 0.75$
- $12 < p_h/(\text{GeV}/c) < 40$ (RICH PID range)
- Particle identified as a kaon (conservatively, to end up with a very pure sample)
- Kinematic coverage of the final sample with kaon events:

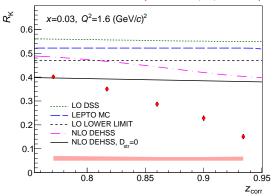


• $N_{\rm kaons} \sim 64000$

- Two x bins: x < 0.05, x > 0.05 (with $\langle Q^2 \rangle = 1.6$ (GeV/c)² and $\langle Q^2 \rangle = 4.8$ (GeV/c)², respectively)
- z bin limits: 0.75, 0.80, 0.85, 0.90, 0.95, 1.05

Acceptance and other corrections

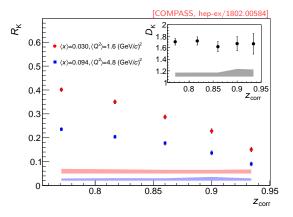
• Ratio of acceptances of K^- and K^+ is constant over z



- Great purity of the sample \Rightarrow simplified unfolding
- Vector mesons correction: simulated with HEPGEN; ϕ decay is not important in high-z region
- Charm quark decay correction is very small
- Correction for radiative effects done with TERAD, and cancel

Results vs expectation for $R_{K} = \frac{M^{K^{-}}/M^{K^{+}}}{M^{K^{+}}}$

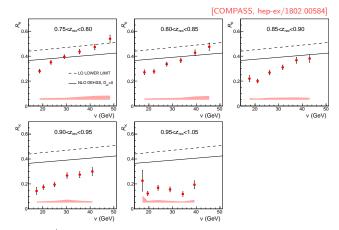
(assuming usual assumptions of QCD)


[COMPASS, hep-ex/1802.00584]

•
$$z_{\rm corr} = z_{\rm rec}^{\rm data} - (z_{\rm rec}^{\rm MC} - z_{\rm gen}^{\rm MC})$$

- Data of bin x < 0.05</p>
- $R_{K} = M^{K^{-}}/M^{K^{+}}$ is below its predicted values
- Further corrections of vector meson production or of pion misidentification as kaon further decrease R_K and increase the tension

Results for $R_{\kappa} = M^{\kappa^-}/M^{\kappa^+}$ in two x bins



ullet The results of both x bin can be well described by the same functional form, e.g. $\propto (1-z)^{\beta}$

• The ratio of the results in the two x bins is constant over z

Ana S. Nunes (LIP-Lisbon)

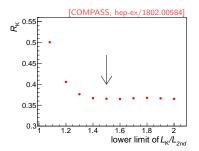
$R_{K}(\nu)$ in 5 bins of z

• $R_{K} = M^{K^{-}}/M^{K^{+}}$ is below predictions for low ν

Agreement with LSS group observation ("the largest discrepancy between pQCD expectations and experimental results is observed in the region of large z and small y, *i.e.* small ν")

Ratio R_K as a function of the missing mass

- High z kaon \Rightarrow reduced phase space for other particles
- Missing mass, $M_X \approx \sqrt{M_p^2 + 2M_p\nu(1-z) Q^2(1-z^2)}$: natural variable to describe effect


- Smooth trend of R_K vs M_X
- Correction within the pQCD formalism may be required to take into account the phase space available for the hadronisation of the target remnants

- Data obtained with a 160 GeV muon beam and isoscalar ⁶LiD target
- $\bullet~K^-/K^+$ multiplicity ratio measured in DIS for the first time for high z
- Results contradict expectations for z > 0.8 using the formalism of (N)LO pQCD
- The contradiction is larger at large z and small ν
- Possible implications: cross-section factorisation or/and universality of (kaon) fragmentation functions do not hold
- Within this formalism, an additional correction may be required to describe the data, taking into account the phase space available for hadronisation

- Data obtained with a 160 GeV muon beam and isoscalar ⁶LiD target
- $\bullet~K^-/K^+$ multiplicity ratio measured in DIS for the first time for high z
- Results contradict expectations for z > 0.8 using the formalism of (N)LO pQCD
- The contradiction is larger at large z and small ν
- Possible implications: cross-section factorisation or/and universality of (kaon) fragmentation functions do not hold
- Within this formalism, an additional correction may be required to describe the data, taking into account the phase space available for hadronisation

Thank you!

BACKUP

• $R_K = M^{K^-}/M^{K^+}$ becomes stable at about $L_K/L_{2nd} = 1.4 \Rightarrow$ imposed cut is $L_K/L_{2nd} > 1.5$

- Results agree with previously published results in the overlap region (0.75 < z < 0.85)
- Results obtained from data originated by different triggers are consistent within 2%
- R_K constant with respect to z_{vtx} after acceptance correction applied
- Acceptance systematic uncertainty: 2%, dominated by trigger-by-trigger variations
- Uncertainty due to variations in φ (in the spectrometer coordinate system): 3%-11% (correlated for different z bins)
- Uncertainty in the **RICH unfolding**: 3%
- Beam spin dependent contributions $\propto \sin \phi_{\rm h} \Rightarrow$ can be neglected in ϕ -integrated multiplicities
- Total relative uncertainty: 5%-12% depending upon *z*-bin (highly correlated in different *z* bins)