Simulations of photo-nuclear dijets with Pythia 8 and their sensitivity to nuclear PDFs

DIS 2018

Ilkka Helenius

April 17th, 2018

Tübingen University Insititute for Theoretical Physics

In collaboration with Torbjörn Sjöstrand

Motivation & Outline

Why study photoproduction?

- Monte-Carlo event generators essential to study the potential of future experiments (EIC)
 - ⇒ Photoproduction implemented into PYTHIA 8
- Photo-nuclear processes in ultra-peripheral collisions can be used to probe the structure of nucleons (nuclear PDFs)

Outline

- 1. Photoproduction in PYTHIA 8
- 2. Comparisons to HERA photoproduction data
- 3. Ultra-peripheral heavy-ion collisions
- 4. Summary & Outlook

Photoproduction in Рутніа 8

Pythia 8

- A general-purpose Monte-Carlo event generator
- Current version 8.235, released a couple of weeks ago
- Main focus has been in pp, now extensions to ee, ep, pA, AA

Team:

Christine O. Rasmussen

· Christian Bierlich	Lund	Univers	ity
----------------------	------	---------	-----

- Nishita Desai CNRS-Universite de Montpellier
- · Nadine Fischer Monash University
- Ilkka Helenius Tübingen University
- University of Birmingham Philip Ilten
- Leif Lönnblad Lund University
- Fermi National Accelerator Laboratory Stephen Mrenna
- Stefan Prestel Fermi National Accelerator Laboratory
- Lund University Torbjörn Sjöstrand **Lund University**
- Peter Skands Monash University

Event generation in Pythia 8

1. Hard process generation

 Generate according to LO partonic cross section and PDFs (or feed in processes from external matrix element generator)

2. Parton showers

 Generate Initial and Final State Radiation (ISR & FSR) according to DGLAP evolution equations

3. Multiparton interactions (MPIs)

• Use regularized QCD 2 ightarrow 2 cross sections finite also at $p_T
ightarrow 0$

4. Add beam remnants

- · Minimal number of partons to conserve colour and flavour
- · Fix momenta so that total momentum is conserved

5. Hadronization

- · Using Lund string model with color reconnection
- Decays into stable hadrons

Photoproduction in ep

Photoproduction: Small photon virtuality $Q_{\gamma}^2 \lesssim 1 \text{ GeV}^2$ (cf. DIS)

 Factorize the flux of photons from the hard scattering (Weizsäcker-Williams)

$$f_{\gamma}^l(\mathbf{X}_{\gamma}) = \frac{\alpha_{\text{em}}}{2\pi} \frac{(1 + (1 - \mathbf{X}_{\gamma})^2)}{\mathbf{X}_{\gamma}} \log \left[\frac{Q_{\text{max}}^2}{Q_{\text{min}}^2(\mathbf{X}_{\gamma})} \right]$$

- Direct processes
 - Photon initiator of the hard process
 - No MPIs but FSR and ISR for hadron
- Resolved processes
 - · Photon fluctuates into a hadronic state
 - · Partonic structure described with PDFs
 - FSR and ISR for both sides, also MPIs

PDFs for resolved photons

Obtained through global DGLAP analysis (LEP data mainly)

- Some differences between analyses, especially for gluon
 ⇒ Theoretical uncertainty for resolved processes
- CJKL used as a default in PYTHIA 8, others via LHAPDF5 but only for hard-process generation

MPIs in Pythia 8

- Probability for MPIs from 2 ightarrow 2 QCD processes
- Partonic cross section diverges at $p_{\mathrm{T}} \to 0$
 - \Rightarrow Regulate the divergence with parameter p_{T0}

$$\frac{\mathrm{d}\sigma^{2\to2}}{\mathrm{d}p_\mathrm{T}^2} \propto \frac{\alpha_\mathrm{S}(p_\mathrm{T}^2)}{p_\mathrm{T}^4} \to \frac{\alpha_\mathrm{S}(p_\mathrm{T0}^2+p_\mathrm{T}^2)}{(p_\mathrm{T0}^2+p_\mathrm{T}^2)^2}$$

- pp: Power-law in \sqrt{s} $p_{\text{T0}}(\sqrt{s}) = p_{\text{T0}}^{\text{ref}}(\sqrt{s}/7 \text{ TeV})^{\alpha}$ $p_{\text{T0}}^{\text{ref}} = 2.28 \text{ GeV/c}, \, \alpha = 0.215$ (Monash tune)
- $\gamma\gamma$: Logarithmic in \sqrt{s} $p_{\text{T0}}(\sqrt{s}) = p_{\text{T0}}^{\text{ref}} + \alpha \log \left(\sqrt{s}/100 \text{ GeV}\right)$ $p_{\text{T0}}^{\text{ref}} = 1.52 \text{ GeV/c}, \, \alpha = 0.413$ (I.H., T. Sjöstrand, in prep.)

Comparisons to HERA data

Charged particle p_T spectra in ep collisions at HERA

[H1: Eur.Phys.J. C10 (1999) 363-372]

H1 measurement

- $E_p = 820 \text{ GeV}, E_e = 27.5 \text{ GeV}$
- $\cdot < W_{\gamma p} > \approx 200 \text{ GeV}$
- $Q_{\gamma}^2 < 0.01 \, \text{GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Charged particle p_T spectra in ep collisions at HERA

[H1: Eur.Phys.J. C10 (1999) 363-372]

H1 measurement

- $E_p = 820 \text{ GeV}, E_e = 27.5 \text{ GeV}$
- $\cdot < W_{\gamma p} > \approx 200 \text{ GeV}$
- $Q_{\gamma}^2 < 0.01 \, \text{GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Charged particle p_T spectra in ep collisions at HERA

H1 measurement

- $E_p = 820 \text{ GeV}, E_e = 27.5 \text{ GeV}$
- $\cdot < W_{\gamma p} > \approx 200 \text{ GeV}$
- $Q_{\gamma}^2 < 0.01 \, \text{GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Dijet photoproduction in ep collisions at HERA

ZEUS dijet measurement

- $Q_{\gamma}^2 < 1.0 \text{ GeV}^2$
- 134 < $W_{\gamma p}$ < 277 GeV
- $E_{\mathrm{T}}^{\mathrm{jet1}} > 14 \text{ GeV},$ $E_{\mathrm{T}}^{\mathrm{jet2}} > 11 \text{ GeV}$
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Different contributions

• Define $x_{\gamma}^{\text{obs}} = \frac{E_{T}^{\text{jet1}} e^{\eta^{\text{jet1}}} + E_{T}^{\text{jet2}} e^{\eta^{\text{jet2}}}}{2yE_{e}}$

to discriminate direct and resolved processes (=x in γ at LO parton level)

• At high- x_{γ}^{obs} direct processes dominate

[ZEUS: Eur.Phys.J. C23 (2002) 615-631]

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets [Eur.Phys.J. C23 (2002) 615-631]

- \cdot Simulations tend to overshoot the dijet data by \sim 10 %
- $\cdot \sim$ 10 % uncertainty from photon PDFs for $x_{\gamma}^{\rm obs} < 0.75$

Ultraperipheral heavy-ion collisions

Motivation: Nuclear parton distribution functions (nPDFs)

- ⇒ Large uncertainties especially for gluon nPDFs
- ⇒ Uncertainty in the pQCD baseline for heavy-ion physics at the LHC

Data available for nPDF fits

- Fixed-target (ν)DIS and DY
- Pions in dAu at RHIC
- Dijets in pPb at the LHC
- EW bosons at the LHC
- ⇒ Limited kinematic reach

Ultra-peripheral heavy-ion collisions

- Large impact parameter $b \Rightarrow No$ strong interaction
- EM-field of nuclei described with quasi-real photons (EPA)
- ⇒ Flux of photons with low virtuality (= Photoproduction)
 - Photon-photon (dileptons, light-by-light)
 - ⇒ Useful to calibrate the photon flux
 - Photon-nucleus (dijets, incl. hadrons, heavy flavours, ...)
 - ⇒ Can be used to probe nuclear PDFs

Ultra-peripheral heavy-ion collisions

- Large impact parameter $b \Rightarrow No$ strong interaction
- EM-field of nuclei described with quasi-real photons (EPA)
- ⇒ Flux of photons with low virtuality (= Photoproduction)
 - Photon-photon (dileptons, light-by-light)
 - \Rightarrow Useful to calibrate the photon flux
 - Photon-nucleus (dijets, incl. hadrons, heavy flavours, ...)
 - ⇒ Can be used to probe nuclear PDFs

Photon-photon interactions

Photon flux from nuclei in impact-parameter b space

 Obtained by a Fourier transformation of the time-dependent EM-field

$$x_{\gamma}f_{\gamma}^{A}(x_{\gamma},b) = \frac{\alpha_{EM}Z^{2}}{\pi^{2}} \left[\frac{x_{\gamma}m}{\hbar c} K_{1} \left(\frac{x_{\gamma}bm}{\hbar c} \right) \right]^{2}$$

where Z is nuclear charge, m (per-nucleon) mass and K_1 modified Bessel function [Jackson, Classical Electrodyn., 2nd ed.]

Effective photon-photon luminosity

- Need to reject events with hadronic interactions
 - Reject events based on hard-sphere approximation
 ⇒ Possible to set up in PYTHIA 8
 - Use hadronic interaction probabilities based on nuclear overlap, e.g. STARLIGHT [Comput.Phys.Commun. 212 (2017) 258-268]

High-mass dimuons in ultraperipheral Pb+Pb at the LHC

$$Pb+Pb \rightarrow \mu^+ + \mu^- + Pb^* + Pb^*$$

- Data well described by STARLIGHT MC
- ⇒ Confirms EPA for Pb+Pb at the LHC

- PYTHIA hard-sphere flux agrees with STARLIGHT
- Small difference at high-W from nuclear density (\sim high- x_{γ})

Photon-nucleus interactions

Flux for photon-nucleus interactions

• Integrate over $b > 2R_A$ to reject hadronic interactions

$$x_{\gamma} f_{\gamma}^{A}(x_{\gamma}) = \frac{2\alpha_{\rm EM}Z^{2}}{\pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right],$$

where $\xi = 2R_A x_{\gamma} m/\hbar c$

• Maximum $W_{\gamma \text{Pb}} \approx 2\sqrt{\text{s}}$ in HERA

Photo-nuclear dijet production

- Preliminary ATLAS analysis [ATLAS-CONF-2017-011] anti- $k_{\rm T}$, R=0.4, $p_{\rm T}^{\rm lead}>20$ GeV, $p_{\rm T}^{\rm jets}>15$ GeV, $|\eta|<4.4$
- · Event-level variables:

$$\begin{split} m_{\text{jets}} &= \sqrt{\left(\Sigma_{i} E_{i}\right)^{2} - \left|\Sigma_{i} \vec{p}_{i}\right|^{2}}, \qquad H_{\text{T}} = \Sigma_{i} p_{\text{T}i} \\ y_{\text{jets}} &= \frac{1}{2} \log \left(\frac{\Sigma_{i} E_{i} + \Sigma_{i} p_{zi}}{\Sigma_{i} E_{i} - \Sigma_{i} p_{zi}}\right) \qquad x_{\text{A}} = \frac{m_{\text{jets}}}{\sqrt{s}} \mathrm{e}^{-y_{\text{jets}}} \end{split}$$

Differential photo-nuclear dijet distributions (Preliminary)

- Preliminary data well described with $\gamma {\rm p}$ from PYTHIA 6 and photon flux from STARLIGHT
- · Nuclear PDFs and photon flux now included in РҮТНІА 8
- Direct processes dominate at $x_A \lesssim 10^{-2}$

Expected potential of the dijet data with ATLAS cuts

Photon PDF dependence

- Largest sensitivity (\sim 10 %) at $x_A > 0.1$
- Negligible effect at $x_A < 0.02$

Expected statistical error

- Assume $L = 1 \text{ nb}^{-1}$ for the measurement
- Clearly smaller than nPDF uncertainty

 \Rightarrow Potential to provide constraints for nPDFs down to $x \approx 10^{-3}$ with the ATLAS cuts on jet kinematics

Dijets at lower p_T

Lower the jet p_T

- $p_{\mathrm{T}}^{\mathrm{jet1}} > 8 \text{ GeV}$
- $p_{\rm T}^{\rm jet2} > 6$ GeV
- · Similar cuts as in HERA
- Increase cross section and x_A reach

Expected statistical error

• Sufficient statistics at $x_A > 2 \cdot 10^{-4} (L = 1 \text{ nb}^{-1})$

- Larger nPDF uncertainties due to smaller Q² and x_A
 ⇒ Enhanced potential to constrain nPDFs
- Possible to use other observables at lower p_T (e.g. γ +jet)

Summary & Outlook

Summary

Photoproduction implemented into PYTHIA 8

- Automatic mixing of direct and resolved processes
- Full parton-level evolution (parton showers, MPIs)
- Agreement with HERA data, support for MPIs
- Can simulate UPCs by using heavy-ion specific photon flux (though not yet with nuclear targer but with nPDFs)

Ultra-peripheral heavy-ion collisions

- · Use dilepton production to calibrate the photon flux
- Can study photo-nuclear processes with LHC before EIC
- ATLAS dijets can provide nPDF constraints down to $x \sim 10^{-3}$
- Number of potential observables, increased low- x_A reach with lower p_T

Ongoing work for UPCs and eA simulations in PYTHIA 8

- Improve UPC sampling efficiency (optimized for ep)
- Merge with new heavy-ion machinery (Angantyr) recently introduced to PYTHIA 8 [by L. Lönnblad and C. Bierlich]
- Study hard diffraction in γA using new implementation for photoproduction in ep [I.H., C. O. Rasmussesn, T. Sjöstrand]
 - Based on diffractive PDFs and dynamical rapidity gap survival from MPIs
 [originally implemented for pp by C. O. Rasmussesn, T. Sjöstrand]
- Smooth merging of photoproduction and DIS events

Backup slides

MPI and parton shower generation

Common evolution scale (p_T) for FSR, ISR and MPIs

• Probability for something to happen at given p_T

$$\begin{split} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{T}} &= \left(\frac{\mathrm{d}\mathcal{P}_{MPI}}{\mathrm{d}p_{T}} + \sum \frac{\mathrm{d}\mathcal{P}_{ISR}}{\mathrm{d}p_{T}} + \sum \frac{\mathrm{d}\mathcal{P}_{FSR}}{\mathrm{d}p_{T}}\right) \\ &\times \exp\left[-\int_{p_{T}}^{p_{T}^{max}} \mathrm{d}p_{T}' \left(\frac{\mathrm{d}\mathcal{P}_{MPI}}{\mathrm{d}p_{T}'} + \sum \frac{\mathrm{d}\mathcal{P}_{ISR}}{\mathrm{d}p_{T}'} + \sum \frac{\mathrm{d}\mathcal{P}_{FSR}}{\mathrm{d}p_{T}'}\right)\right] \end{split}$$

where $\exp[...]$ is a Sudakov factor (probability that nothing else has happened before p_T)

Simultaneous partonic evolution

- 1. Start the evolution from a scale related to the hard process
- 2. Sample p_T values for each \mathcal{P}_i , pick one with highest p_T
- 3. Continue from the sampled p_{T} until reach $p_{\mathrm{Tmin}} \sim \Lambda_{\mathrm{QCD}}$

Partonic evolution for resolved photons

DGLAP equations for photons

· Additional term due to $\gamma o q\overline{q}$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\text{em}}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_{\text{s}}(Q^2)}{2\pi} \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1-x)^2)$ for quarks, 0 for gluons (LO)

Solution has two components:

$$f_i^{\gamma}(x, Q^2) = f_i^{\gamma, pl}(x, Q^2) + f_i^{\gamma, had}(x, Q^2)$$

- Point-like part from perturbative QCD
- \cdot Non-perturbative input required for the hadron-like part

$$f_i^{\gamma, \text{had}}(x, Q_0^2) = N_i x^{a_i} (1 - x)^{b_i}$$

Parameter fixed in a global analysis

Charged particle η dependence in ep collisions at HERA

[Eur.Phys.J. C10 (1999) 363-372]

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets [Eur.Phys.J. C23 (2002) 615-631]

- · Good agreement with the data
- Some sensitivity to MPIs with $x_{\gamma}^{\rm obs} < 0.75$

Dijet η distribution

Dijet kinematics

- Due to soft γ spektrum jets asymmetrically distributed in η
- No need to push for large η to gain sensitivity to small x

Quantifying the impact of the data to nPDFs requires

- Finalized data
- NLO calculation for photoproduction of dijets
- · Accurate description of photon flux from nuclei