





# A Fixed-Target Program at the LHC (AFTER@LHC): where do we stand ?

### J.P. Lansberg

#### IPN Orsay - Paris-Sud U./Paris Saclay U. - CNRS/IN2P3



#### April 16 - 20, 2018, Kobe, Japan

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current\_author\_list

AFTER@LHC

< D > < A >

### Part I

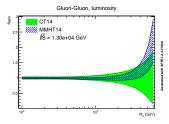
# The scope of a fixed-target programme at the LHC

April 17, 2018 2 / 24

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

J.P. Lansberg (IPNO)

AFTER@LHC


Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

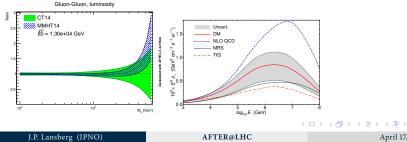
イロト イヨト イヨト イヨト

## Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

```
• Very large PDF uncertainties for x \gtrsim 0.5.
```

[could be crucial to characterise possible BSM discoveries]



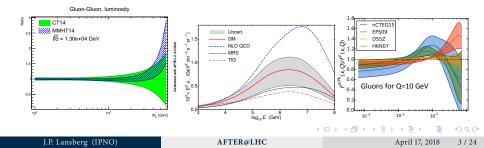

. . . . . . .

## Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for  $x \gtrsim 0.5$ .

[could be crucial to characterise possible BSM discoveries]

· Proton charm content important to high-energy neutrino & cosmic-rays physics



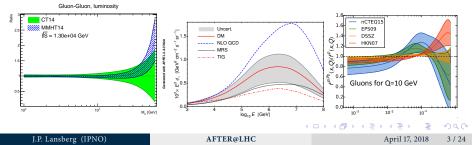

## Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for  $x \gtrsim 0.5$ .

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions




## Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for  $x \gtrsim 0.5$ .

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- Search and study rare proton fluctuations

where one gluon carries most of the proton momentum



Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

## Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

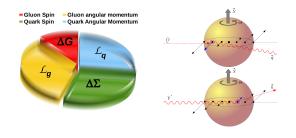
• Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

[First hint by COMPASS that  $\mathcal{L}_g \neq 0$ ]



## Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons


Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Test of the QCD factorisation framework

[First hint by COMPASS that  $\mathcal{L}_g \neq 0$ ]

[beyond the DY  $A_N$  sign change]

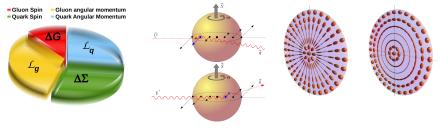


## Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

 $\left\lfloor \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q \right\rfloor \qquad [$ 

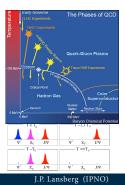
[First hint by COMPASS that  $\mathcal{L}_g \neq 0$ ]


Test of the QCD factorisation framework

[beyond the DY  $A_N$  sign change]

イロト イヨト イヨト イヨト

· Determination of the linearly polarised gluons in unpolarised protons


[once measured, allows for spin physics without polarised proton, e.g. at the LHC]

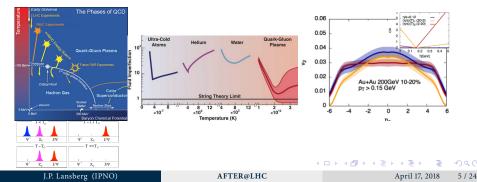


Heavy-ion collisions towards large rapidities

#### Heavy-ion collisions towards large rapidities

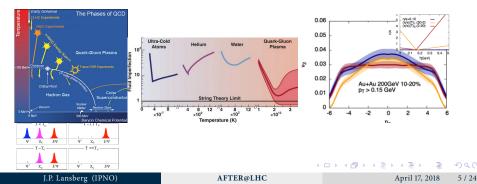
• A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer  $(J/\psi, \psi', \chi_c, Y, D, J/\psi \leftarrow b + pairs)$ ]




AFTER@LHC

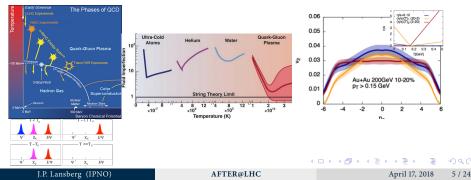
April 17, 2018 5 / 24

• • • • • • • • • • • • •


#### Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
  - [needed to calibrate the quarkonium thermometer  $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$ ]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation




#### Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
  - [needed to calibrate the quarkonium thermometer  $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$ ]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation



#### Heavy-ion collisions towards large rapidities

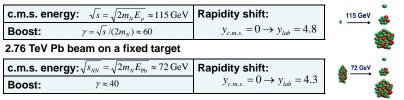
- · A complete set of heavy-flavour studies between SPS and RHIC energies
  - [needed to calibrate the quarkonium thermometer  $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$ ]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- · Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from p + A to A + B collisions



### Part II

### Possible Implementations and Luminosities

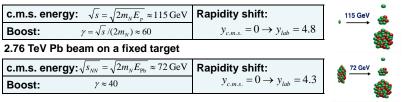
J.P. Lansberg (IPNO)


AFTER@LHC

April 17, 2018 6 / 24

• • • • • • • • • • • •

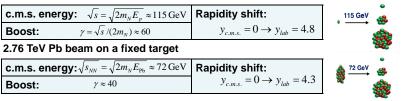
#### **Energy range**


#### 7 TeV proton beam on a fixed target



• □ ▶ • • □ ▶ • □ ▶ • □ ▶

#### **Energy range**


#### 7 TeV proton beam on a fixed target



Such  $\sqrt{s}$  allow, for the first time, for systematic studies of *W* boson, bottomonia,  $p_T$  spectra, associated production, ..., in the fixed target mode

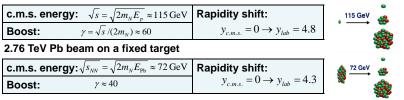
#### **Energy range**

#### 7 TeV proton beam on a fixed target



Such  $\sqrt{s}$  allow, for the first time, for systematic studies of *W* boson, bottomonia,  $p_T$  spectra, associated production, ..., in the fixed target mode

Effect of boost :


[particularly relevant for high energy beams]

イロト イヨト イヨト イヨト

• LHCb and the ALICE muon arm become backward detectors  $[y_{c.m.s.} < 0]$ 

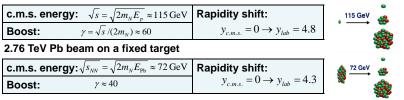
#### **Energy range**

#### 7 TeV proton beam on a fixed target



Such  $\sqrt{s}$  allow, for the first time, for systematic studies of *W* boson, bottomonia,  $p_T$  spectra, associated production, ..., in the fixed target mode

Effect of boost :


[particularly relevant for high energy beams]

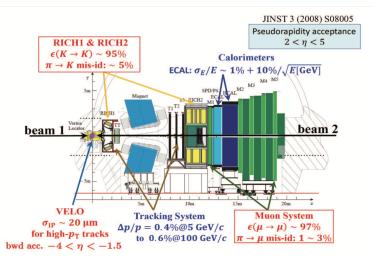
イロト イ部ト イヨト イヨト 二日

- LHCb and the ALICE muon arm become backward detectors  $[y_{c.m.s.} < 0]$
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers half of the backward region for most probes  $[-1 < x_F < 0]$

#### **Energy range**

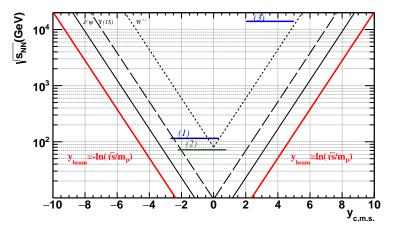
#### 7 TeV proton beam on a fixed target




Such  $\sqrt{s}$  allow, for the first time, for systematic studies of *W* boson, bottomonia,  $p_T$  spectra, associated production, ..., in the fixed target mode

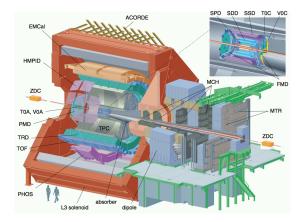
Effect of boost :

[particularly relevant for high energy beams]


- LHCb and the ALICE muon arm become backward detectors  $[y_{c.m.s.} < 0]$
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers half of the backward region for most probes  $[-1 < x_F < 0]$
- Allows for backward physics up to high  $x_{target} (\equiv x_2)$ [uncharted for proton-nucleus; most relevant for p-p<sup>†</sup> with large  $x^{\frac{1}{2}}$ ] LP Lansberg (IPNO) AFTER@LHC APTIL 7, 2018 7/24

### LHCb acceptance for various colliding modes

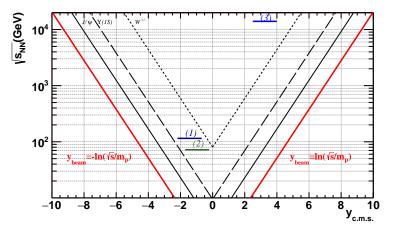



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### LHCb acceptance for various colliding modes



- (1) Fixed-target using p beam,  $E_p = 7$  TeV
- (2) Fixed-target using Pb beam,  $E_{Pb} = 2.76$  A.TeV
- (3) Collider using p beams,  $E_p = 7$  TeV


### ALICE muon acceptance for various colliding modes



- Central barrel:  $-0.9 < \eta < 0.9$
- Muon spectrometer acceptance:  $2.5 < \eta < 4$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### ALICE muon acceptance for various colliding modes



- (1) Fixed-target using p beam,  $E_p = 7$  TeV
- (2) Fixed-target using Pb beam,  $E_{Pb} = 2.76$  A.TeV
- (3) Collider using p beams,  $E_p = 7$  TeV

イロト イヨト イヨト イヨト

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
  - · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
  - $\cdot\,\,$  the LHC beam halo is recycled on dense target: proton flux:  $5\times10^8~s^{-1}\,\,$  & lead flux:  $2\times10^5~s^{-1}\,\,$

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### • Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot$  the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### • Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot$  the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - $\cdot~$  Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow$  Luminosities with internal gas target or crystal-based solutions are not very different

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### • Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot$  the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow$  The beam line option is currently a little too ambitious (this could change with FCC)

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### • Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot$  the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow$  The beam line option is currently a little too ambitious (this could change with FCC)
- $\rightarrow$  The internal solid target & beam split option: similar possibilities; the latter is cleaner

イロト イ部ト イヨト イヨト 二日

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### • Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot$  the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow~$  The beam line option is currently a little too ambitious (this could change with FCC)
- → The internal solid target & beam split option: similar possibilities; the latter is cleaner
- $\rightarrow$  The gas target is the best for polarised target and satisfactory for heavy-ion studies

# Possible implementations

- Internal gas target (with or without storage cell)
  - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
  - currently validated by the LHCb collaboration with SMOG [See P. Robbe's talk on Wednesday at 3:10pm]
  - uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
  - Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
  - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### • Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot~$  the LHC beam halo is recycled on dense target: proton flux: 5  $\times$  10  $^{8}$  s  $^{-1}~~$  & lead flux: 2  $\times$  10  $^{5}$  s  $^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow~$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow$  The beam line option is currently a little too ambitious (this could change with FCC)
- $\rightarrow$  The internal solid target & beam split option: similar possibilities; the latter is cleaner
- $\rightarrow$  The gas target is the best for polarised target and satisfactory for heavy-ion studies

$$\begin{array}{ccc} pp & pA & PbA \\ \mathcal{O}(0.1 - 10 \text{ fb}^{-1}\text{yr}^{-1}) & \mathcal{O}(0.1 - 1 \text{ fb}^{-1}\text{yr}^{-1}) & \mathcal{O}(1 - 50 \text{ nb}^{-1}\text{yr}^{-1}) \\ \end{array}$$

イロト イヨト イヨト イヨト

#### The polarised H-jet polarimeter at RHIC-BNL

Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers: 9 stages of differential pumping
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and <sup>3</sup>He possible
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

#### The polarised H-jet polarimeter at RHIC-BNL

Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers: 9 stages of differential pumping
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and <sup>3</sup>He possible
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

#### Density

- Polarised inlet  $H^{\uparrow}$  flux:  $1.3 \times 10^{17}$  H/s
- Areal density  $\theta_{H^{\dagger}} = 1.2 \times 10^{12} \text{ atoms/cm}^2 [7 15 \times \text{SMOG but much longer data taking}]$
- Higher flux can be obtained for  ${}^{3}\text{He}^{\dagger}$  (×100) and H<sub>2</sub> (×1000)
- Gas target profile at interaction point: gaussian with a full width of ~ 6 mm

イロト イヨト イヨト イヨト

#### The polarised H-jet polarimeter at RHIC-BNL

Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers: 9 stages of differential pumping
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and <sup>3</sup>He possible
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

#### Density

- Polarised inlet  $H^{\uparrow}$  flux:  $1.3 \times 10^{17}$  H/s
- Areal density  $\theta_{H^{\uparrow}} = 1.2 \times 10^{12} \text{ atoms/cm}^2 [7 15 \times \text{SMOG but much longer data taking}]$
- Higher flux can be obtained for  ${}^{3}\text{He}^{\dagger}$  (×100) and H<sub>2</sub> (×1000)
- Gas target profile at interaction point: gaussian with a full width of ~ 6 mm

#### Luminosity

- Using nominal LHC bunch number [2808 bunches for proton and 592 for lead] and for 1 LHC year [10<sup>7</sup> s proton beam and 10<sup>6</sup> s lead beam]
- $\mathcal{L}_{pH^{\dagger}} = 4.5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1} [t = 10^7 \text{ s}: \mathcal{L}_{pH^{\dagger}} = 45 \text{ pb}^{-1}]$

• 
$$\mathcal{L}_{pH_2}^r = 10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1} [t = 10^7 \text{ s} : \mathcal{L}_{pH_2} > 10 \text{ fb}^{-1}]$$

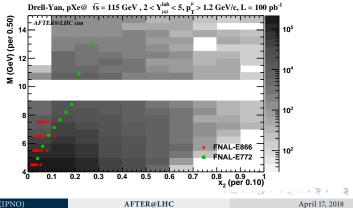
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

# Part III

# An updated selection of projected performances

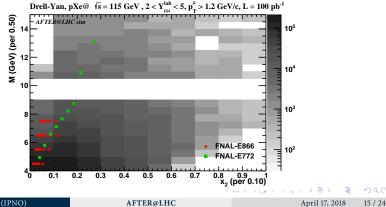
What is not covered

| <ul> <li>Azimuthal anisotropies</li> </ul>    |                                  | [Heav                   | y-Ion, Spin]                    |
|-----------------------------------------------|----------------------------------|-------------------------|---------------------------------|
| <ul> <li>Photon related observable</li> </ul> | les                              | [High- <i>x</i> , Spin, | Heavy-Ion]                      |
| • W boson                                     |                                  | [H                      | ligh- <i>x</i> , Spin]          |
| • Antiproton and related x                    | -section measurements for astrop | article MC tuning       | [High-x]                        |
| • <i>C</i> -even quarkonia                    |                                  | [High- <i>x</i> , Spin, | Heavy-Ion]                      |
| <ul> <li>Associated production</li> </ul>     |                                  | [Spin,                  | Heavy-Ion]                      |
|                                               |                                  |                         |                                 |
|                                               | •                                | D > (문) (문) (문) (문)     | <ul> <li>● 目 の Q (P)</li> </ul> |
| J.P. Lansberg (IPNO)                          | AFTER@LHC                        | April 17                | , 2018 14 / 24                  |

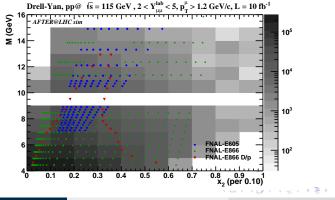

| J.P. Lansberg | (IPNO) |
|---------------|--------|
|---------------|--------|

AFTER@LHC

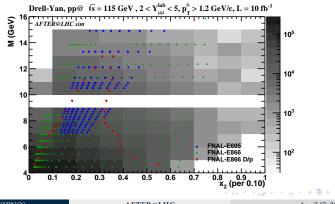
April 17, 2018 15 / 24


・ロト ・雪 ト ・ 油 ト ・ 油

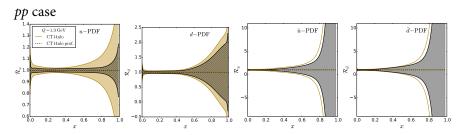
• Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).




15 / 24

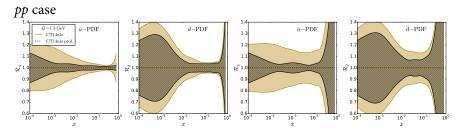

- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]




- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- · Same acceptance for *pp* collisions

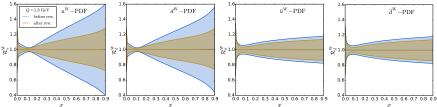


- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- · No existing measurements at RHIC




- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- No existing measurements at RHIC
- · Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting




• □ ▶ • • □ ▶ • • □ ▶ •

- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- · No existing measurements at RHIC
- · Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting



- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- · Same acceptance for *pp* collisions
- No existing measurements at RHIC
- · Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties

#### pW case



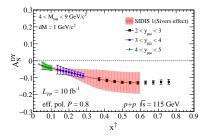
- Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- No existing measurements at RHIC
- · Decrease of the proton PDF uncertainties : new FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties
- On-going theory study for  $W^{\pm}$  production accounting for threshold resummation

D. Kikola et al. Few Body Syst. 58 (2017) 139

AFTER@LHC

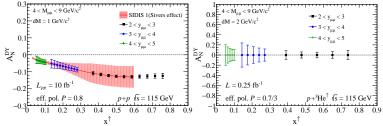
April 17, 2018 16 / 24

D. Kikola et al. Few Body Syst. 58 (2017) 139


DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

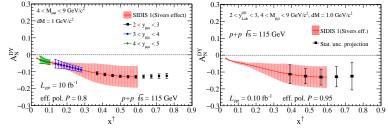
- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !

| Experiment            | particles                     | beam en-<br>ergy (GeV) | $\sqrt{s}$ (GeV) | $x^{\uparrow}$   | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | $\mathcal{P}_{\text{eff}}$ | $\mathcal{F}$ (cm <sup>-2</sup> s <sup>-1</sup> ) |
|-----------------------|-------------------------------|------------------------|------------------|------------------|---------------------------------------------------|----------------------------|---------------------------------------------------|
| AFTER@LHCb            | $p + p^{\uparrow}$            | 7000                   | 115              | $0.05 \div 0.95$ | $1 \cdot 10^{33}$                                 | 80%                        | $6.4 \cdot 10^{32}$                               |
| AFTER@LHCb            | $p+^{3}He^{\uparrow}$         | 7000                   | 115              | $0.05 \div 0.95$ | $2.5 \cdot 10^{32}$                               | 23%                        | $1.4 \cdot 10^{31}$                               |
| AFTER@ALICE $_{\mu}$  | $p + p^{\uparrow}$            | 7000                   | 115              | $0.1 \div 0.3$   | $2.5 \cdot 10^{31}$                               | 80%                        | $1.6\cdot 10^{31}$                                |
| COMPASS<br>(CERN)     | $\pi^- + p^{\uparrow}$        | 190                    | 19               | $0.05 \div 0.55$ | $2 \cdot 10^{33}$                                 | 18%                        | 6.5 · 10 <sup>31</sup>                            |
| PHENIX/STAR<br>(RHIC) | $p^{\uparrow} + p^{\uparrow}$ | collider               | 510              | $0.05 \div 0.1$  | $2\cdot 10^{32}$                                  | 50%                        | $5.0\cdot10^{31}$                                 |
| E1039 (FNAL)          | $p + p^{\dagger}$             | 120                    | 15               | $0.1 \div 0.45$  | $4 \cdot 10^{35}$                                 | 15%                        | $9.0 \cdot 10^{33}$                               |
| E1027 (FNAL)          | $p^{\uparrow} + p$            | 120                    | 15               | $0.35 \div 0.9$  | $2 \cdot 10^{35}$                                 | 60%                        | $7.2 \cdot 10^{34}$                               |
| NICA (JINR)           | $p^{\uparrow} + p$            | collider               | 26               | $0.1 \div 0.8$   | $1 \cdot 10^{32}$                                 | 70%                        | $4.9 \cdot 10^{31}$                               |
| fsPHENIX<br>(RHIC)    | $p^{\dagger} + p^{\dagger}$   | collider               | 200              | $0.1 \div 0.5$   | $8\cdot 10^{31}$                                  | 60%                        | $2.9\cdot 10^{31}$                                |
| fsPHENIX<br>(RHIC)    | $p^{\dagger} + p^{\dagger}$   | collider               | 510              | $0.05 \div 0.6$  | $6\cdot 10^{32}$                                  | 50%                        | $1.5\cdot 10^{32}$                                |
| PANDA (GSI)           | $\tilde{p} + p^{\uparrow}$    | 15                     | 5.5              | $0.2 \div 0.4$   | $2\cdot 10^{32}$                                  | 20%                        | $8.0\cdot 10^{30}$                                |


- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase

| Experiment            | particles                     | beam en-<br>ergy (GeV) | $\sqrt{s}$ (GeV) | x <sup>†</sup>   | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | $\mathcal{P}_{\text{eff}}$ | $\mathcal{F}$ (cm <sup>-2</sup> s <sup>-1</sup> ) |
|-----------------------|-------------------------------|------------------------|------------------|------------------|---------------------------------------------------|----------------------------|---------------------------------------------------|
| AFTER@LHCb            | $p + p^{\uparrow}$            | 7000                   | 115              | $0.05 \div 0.95$ | $1 \cdot 10^{33}$                                 | 80%                        | $6.4 \cdot 10^{32}$                               |
| AFTER@LHCb            | $p+^{3}He^{\uparrow}$         | 7000                   | 115              | $0.05 \div 0.95$ | $2.5 \cdot 10^{32}$                               | 23%                        | $1.4 \cdot 10^{31}$                               |
| AFTER@ALICE $_{\mu}$  | $p + p^{\uparrow}$            | 7000                   | 115              | $0.1 \div 0.3$   | $2.5 \cdot 10^{31}$                               | 80%                        | $1.6 \cdot 10^{31}$                               |
| COMPASS<br>(CERN)     | $\pi^- + p^{\uparrow}$        | 190                    | 19               | $0.05 \div 0.55$ | $2 \cdot 10^{33}$                                 | 18%                        | 6.5 · 10 <sup>31</sup>                            |
| PHENIX/STAR<br>(RHIC) | $p^{\uparrow} + p^{\uparrow}$ | collider               | 510              | $0.05 \div 0.1$  | $2\cdot 10^{32}$                                  | 50%                        | $5.0\cdot10^{31}$                                 |
| E1039 (FNAL)          | $p + p^{\dagger}$             | 120                    | 15               | $0.1 \div 0.45$  | $4 \cdot 10^{35}$                                 | 15%                        | $9.0 \cdot 10^{33}$                               |
| E1027 (FNAL)          | $p^{\uparrow} + p$            | 120                    | 15               | $0.35 \div 0.9$  | $2 \cdot 10^{35}$                                 | 60%                        | $7.2 \cdot 10^{34}$                               |
| NICA (JINR)           | $p^{\uparrow} + p$            | collider               | 26               | $0.1 \div 0.8$   | $1 \cdot 10^{32}$                                 | 70%                        | $4.9 \cdot 10^{31}$                               |
| fsPHENIX<br>(RHIC)    | $p^{\dagger} + p^{\dagger}$   | collider               | 200              | $0.1 \div 0.5$   | $8\cdot 10^{31}$                                  | 60%                        | $2.9\cdot 10^{31}$                                |
| fsPHENIX<br>(RHIC)    | $p^{\dagger} + p^{\dagger}$   | collider               | 510              | $0.05 \div 0.6$  | $6\cdot 10^{32}$                                  | 50%                        | $1.5\cdot10^{32}$                                 |
| PANDA (GSI)           | $\tilde{p} + p^{\uparrow}$    | 15                     | 5.5              | $0.2 \div 0.4$   | $2\cdot 10^{32}$                                  | 20%                        | $8.0 \cdot 10^{30}$                               |




- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase
- <sup>3</sup>He<sup> $\uparrow$ </sup> target  $\rightarrow$  quark Sivers effect in the neutron via DY: unique !

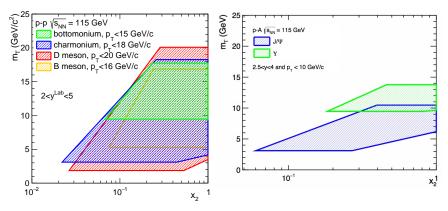
| Experiment            | particles                     | beam en-<br>ergy (GeV) | $\sqrt{s}$ (GeV) | $x^{\uparrow}$   | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | $\mathcal{P}_{\text{eff}}$ | $\mathcal{F}$ (cm <sup>-2</sup> s <sup>-1</sup> ) |
|-----------------------|-------------------------------|------------------------|------------------|------------------|---------------------------------------------------|----------------------------|---------------------------------------------------|
| AFTER@LHCb            | $p + p^{\dagger}$             | 7000                   | 115              | $0.05 \div 0.95$ | $1 \cdot 10^{33}$                                 | 80%                        | $6.4 \cdot 10^{32}$                               |
| AFTER@LHCb            | $p+^{3}He^{\dagger}$          | 7000                   | 115              | $0.05 \div 0.95$ | $2.5 \cdot 10^{32}$                               | 23%                        | $1.4 \cdot 10^{31}$                               |
| AFTER@ALICE $_{\mu}$  | $p + p^{\uparrow}$            | 7000                   | 115              | $0.1 \div 0.3$   | $2.5 \cdot 10^{31}$                               | 80%                        | $1.6 \cdot 10^{31}$                               |
| COMPASS<br>(CERN)     | $\pi^- + p^{\uparrow}$        | 190                    | 19               | $0.05 \div 0.55$ | $2\cdot 10^{33}$                                  | 18%                        | $6.5 \cdot 10^{31}$                               |
| PHENIX/STAR<br>(RHIC) | $p^{\uparrow} + p^{\uparrow}$ | collider               | 510              | $0.05 \div 0.1$  | $2\cdot 10^{32}$                                  | 50%                        | $5.0\cdot10^{31}$                                 |
| E1039 (FNAL)          | $p + p^{\uparrow}$            | 120                    | 15               | $0.1 \div 0.45$  | $4 \cdot 10^{35}$                                 | 15%                        | $9.0 \cdot 10^{33}$                               |
| E1027 (FNAL)          | $p^{\uparrow} + p$            | 120                    | 15               | $0.35 \div 0.9$  | $2 \cdot 10^{35}$                                 | 60%                        | $7.2 \cdot 10^{34}$                               |
| NICA (JINR)           | $p^{\uparrow} + p$            | collider               | 26               | $0.1 \div 0.8$   | $1 \cdot 10^{32}$                                 | 70%                        | $4.9 \cdot 10^{31}$                               |
| fsPHENIX<br>(RHIC)    | $p^{\dagger} + p^{\dagger}$   | collider               | 200              | $0.1 \div 0.5$   | $8\cdot 10^{31}$                                  | 60%                        | $2.9\cdot 10^{31}$                                |
| fsPHENIX<br>(RHIC)    | $p^{\uparrow} + p^{\uparrow}$ | collider               | 510              | $0.05 \div 0.6$  | $6\cdot 10^{32}$                                  | 50%                        | $1.5\cdot10^{32}$                                 |
| PANDA (GSI)           | $\bar{p} + p^{\uparrow}$      | 15                     | 5.5              | $0.2 \div 0.4$   | $2\cdot 10^{32}$                                  | 20%                        | $8.0 \cdot 10^{30}$                               |



- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase
- <sup>3</sup>He<sup> $\dagger$ </sup> target  $\rightarrow$  quark Sivers effect in the neutron via DY: unique !

| Experiment               | particles                     | beam en-<br>ergy (GeV) | $\sqrt{s}$ (GeV) | $x^{\uparrow}$   | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | $\mathcal{P}_{\text{eff}}$ | $\mathcal{F}$ (cm <sup>-2</sup> s <sup>-1</sup> ) |
|--------------------------|-------------------------------|------------------------|------------------|------------------|---------------------------------------------------|----------------------------|---------------------------------------------------|
| AFTER@LHCb               | $p + p^{\dagger}$             | 7000                   | 115              | $0.05 \div 0.95$ | $1 \cdot 10^{33}$                                 | 80%                        | $6.4 \cdot 10^{32}$                               |
| AFTER@LHCb               | $p+^{3}He^{\dagger}$          | 7000                   | 115              | $0.05 \div 0.95$ | $2.5 \cdot 10^{32}$                               | 23%                        | $1.4 \cdot 10^{31}$                               |
| AFTER@ALICE <sub>µ</sub> | $p + p^{\uparrow}$            | 7000                   | 115              | $0.1 \div 0.3$   | $2.5 \cdot 10^{31}$                               | 80%                        | $1.6 \cdot 10^{31}$                               |
| COMPASS<br>(CERN)        | $\pi^- + p^{\uparrow}$        | 190                    | 19               | $0.05 \div 0.55$ | $2\cdot 10^{33}$                                  | 18%                        | $6.5 \cdot 10^{31}$                               |
| PHENIX/STAR<br>(RHIC)    | $p^{\uparrow} + p^{\uparrow}$ | collider               | 510              | $0.05 \div 0.1$  | $2\cdot 10^{32}$                                  | 50%                        | $5.0\cdot10^{31}$                                 |
| E1039 (FNAL)             | $p + p^{\dagger}$             | 120                    | 15               | $0.1 \div 0.45$  | $4 \cdot 10^{35}$                                 | 15%                        | $9.0 \cdot 10^{33}$                               |
| E1027 (FNAL)             | $p^{\uparrow} + p$            | 120                    | 15               | $0.35 \div 0.9$  | $2 \cdot 10^{35}$                                 | 60%                        | $7.2 \cdot 10^{34}$                               |
| NICA (JINR)              | $p^{\uparrow} + p$            | collider               | 26               | $0.1 \div 0.8$   | $1 \cdot 10^{32}$                                 | 70%                        | $4.9 \cdot 10^{31}$                               |
| fsPHENIX<br>(RHIC)       | $p^{\dagger} + p^{\dagger}$   | collider               | 200              | $0.1 \div 0.5$   | $8\cdot 10^{31}$                                  | 60%                        | $2.9\cdot 10^{31}$                                |
| fsPHENIX<br>(RHIC)       | $p^{\uparrow} + p^{\uparrow}$ | collider               | 510              | $0.05 \div 0.6$  | $6\cdot 10^{32}$                                  | 50%                        | $1.5\cdot 10^{32}$                                |
| PANDA (GSI)              | $\bar{p} + p^{\uparrow}$      | 15                     | 5.5              | $0.2 \div 0.4$   | $2\cdot 10^{32}$                                  | 20%                        | $8.0\cdot 10^{30}$                                |




NEW: preliminary FoM with H-jet (1 year)

J.P. Lansberg (IPNO)

AFTER@LHC

April 17, 2018 16 / 24

# Heavy-flavour studies : kinematical ranges



• Left: for LHCb based on 10 fb<sup>-1</sup> of data

• Right : for ALICE based on a  $P_T$  cut (to be improved with 0.25 fb<sup>-1</sup> and HF  $\mu$ ))

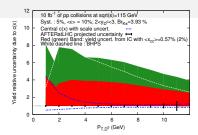
April 17, 2018 17 / 24

• □ ▶ • □ ▶ • □ ▶ • •

J.P. Lansberg (IPNO)

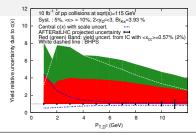
AFTER@LHC

April 17, 2018 18 / 24


イロト イボト イヨト イヨト 二日

This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only1 bin shown]

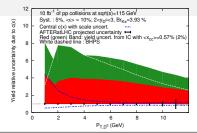
- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin


- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

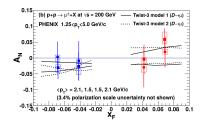
- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]



• □ ▶ • □ ▶ • □ ▶ • •


- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]
- D<sup>0</sup> can also be collected with a transverselypolarised target[Never measured]

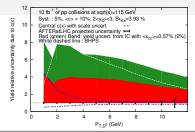



D. Kikola et al.. Few Body Syst. 58 (2017) 139

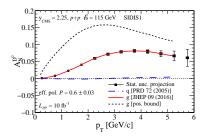
• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]
- D<sup>0</sup> can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to  $\mathcal{L}_g$ ]



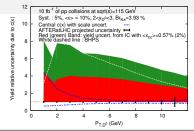

D. Kikola et al.. Few Body Syst. 58 (2017) 139



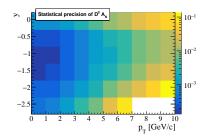

Beware of the unconventional definition of  $x_F$  at RHIC which does not correspond to  $x_1 - x_2$  in the fixed target mode

AFTER@LHC

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]
- D<sup>0</sup> can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the<br/>gluon Sivers effect[related to  $\mathcal{L}_g$ ]
- Differences in  $A_N^{D^0}$  and  $A_N^{D^0}$  gives acces to *C*-odd correlators [No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]





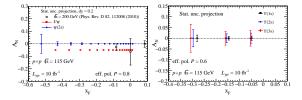

AFTER@LHC

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x* [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]
- D<sup>0</sup> can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the<br/>gluon Sivers effect[related to  $\mathcal{L}_g$ ]
- Differences in  $A_N^{D^0}$  and  $A_N^{D^0}$  gives acces to *C*-odd correlators [No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]
- Precision at the per cent level with AFTER@LHC(b)








• □ ▶ • • □ ▶ • • □ ▶ •

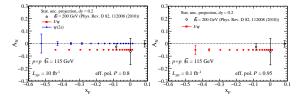
AFTER@LHC

D. Kikola et al. Few Body Syst. 58 (2017)

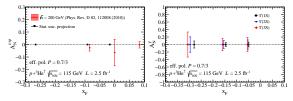
イロト イヨト イヨト イヨト

•  $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  can be measured [So far, only  $J/\psi$  by PHENIX with large uncertainties]

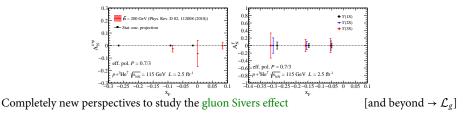



AFTER@LHC

April 17, 2018 19 / 24

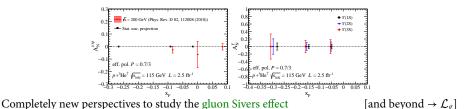

D. Kikola et al. Few Body Syst. 58 (2017)

 $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  can be measured

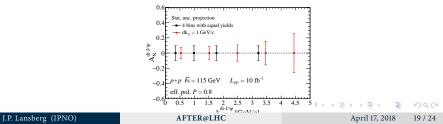

[So far, only  $J/\psi$  by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]



- $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \otimes \eta_c)$  can be measured [So far, only  $J/\psi$  by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (<sup>3</sup>He<sup>†</sup>) at the per cent level for  $J/\psi$ !




- $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \otimes \eta_c)$  can be measured [So far, only  $J/\psi$  by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (<sup>3</sup>He<sup>†</sup>) at the per cent level for  $J/\psi$ !




## Quarkonium Projections: spin

- $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \otimes \eta_c)$  can be measured [So far, only  $J/\psi$  by PHENIX with large uncertainties] [NEW: FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (<sup>3</sup>He<sup>†</sup>) at the per cent level for  $J/\psi$ !



Di- $J/\psi$  allow one to study the  $k_T$  dependence of the gluon Sivers function for the very first time !



The extraction of gluons nPDF necessitates :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The extraction of gluons nPDF necessitates :

• Multiple gluon-sensitive probes to disentangle the nPDF from other effects

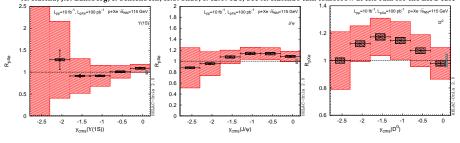
• • • • • • • • • • • • •

The extraction of gluons nPDF necessitates :

Multiple gluon-sensitive probes to disentangle the nPDF from other effects
A good *pp* reference [challenging for SMOG & split beam]

The extraction of gluons nPDF necessitates :

- Multiple gluon-sensitive probes to disentangle the nPDF from other effects
- A good *pp* reference [challenging for SMOG & split beam]
- Multiple colliding systems to probe the *A* dependence


The extraction of gluons nPDF necessitates :

- Multiple gluon-sensitive probes to disentangle the nPDF from other effects
- A good *pp* reference [challenging for SMOG & split beam]
- Multiple colliding systems to probe the *A* dependence
- All this is available with the fixed-target mode

The extraction of gluons nPDF necessitates :

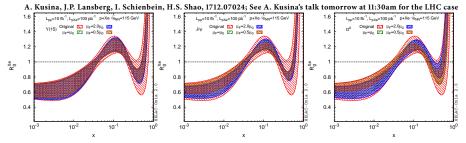
- Multiple gluon-sensitive probes to disentangle the nPDF from other effects
- A good *pp* reference [challenging for SMOG & split beam]
- Multiple colliding systems to probe the A dependence
- All this is available with the fixed-target mode

#### nCTEQ uncertainties vs. projected statistical uncertainties



A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, 1712.07024; See A. Kusina's talk tomorrow at 11:30am for the LHC case

J.P. Lansberg (IPNO)


AFTER@LHC

April 17, 2018 20 / 24

The extraction of gluons nPDF necessitates :

- Multiple gluon-sensitive probes to disentangle the nPDF from other effects
- A good *pp* reference [challenging for SMOG & split beam]
- Multiple colliding systems to probe the *A* dependence
- All this is available with the fixed-target mode

#### nCTEQ reweighting uncertainties: main uncertainties is the scale



Clear decrease of the nPDF uncertainty in the EMC region:

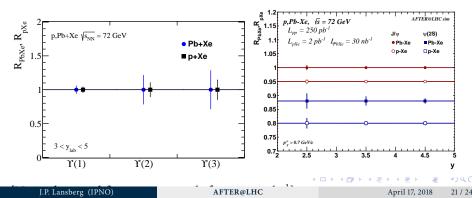
J.P. Lansberg (IPNO)

AFTER@LHC

B.Trzeciak et al.Few-Body Syst (2017) 58:148

イロト イポト イヨト イヨト

B.Trzeciak et al.Few-Body Syst (2017) 58:148


• Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC

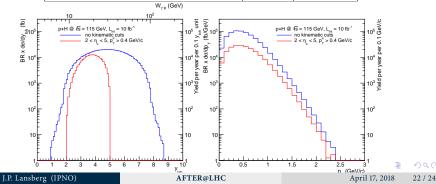
B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC
- Clear need for a reliable baseline with *pA* systems

B.Trzeciak et al.Few-Body Syst (2017) 58:148

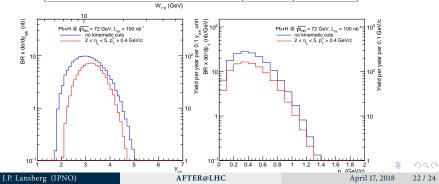
- Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC
- Clear need for a reliable baseline with *pA* systems
- Statistical-uncertainty projections (accounting for background subtraction)




|                                                                                      | pН                   | PbH                  |
|--------------------------------------------------------------------------------------|----------------------|----------------------|
| Photon-emitter                                                                       | proton               | Lead                 |
| $\sigma_{J/\psi}^{tot}$ (pb)                                                         | $1.18 \times 10^{3}$ | $276.77 \times 10^3$ |
| $\sigma_{J/\psi \to l^+ l^-}$ (pb)                                                   | 70.10                | $16.50 \times 10^3$  |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ cut) (pb)                       | 20.65                | 9.81×10 <sup>3</sup> |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ and $p_{\rm T}^{\mu}$ cut) (pb) | 20.64                | 9.81×10 <sup>3</sup> |
| # events                                                                             | 200 000              | 1000                 |

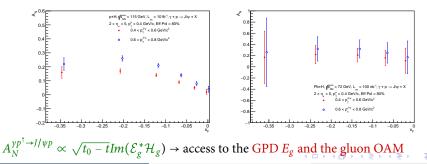
#### JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

イロト イヨト イヨト イヨト


|                                                                                      | pН                   | PbH                  |
|--------------------------------------------------------------------------------------|----------------------|----------------------|
| Photon-emitter                                                                       | proton               | Lead                 |
| $\sigma_{J/\psi}^{tot}$ (pb)                                                         | $1.18 \times 10^{3}$ | $276.77 \times 10^3$ |
| $\sigma_{J/\psi \to l^+l^-}$ (pb)                                                    | 70.10                | $16.50 \times 10^3$  |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ cut) (pb)                       | 20.65                | 9.81×10 <sup>3</sup> |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ and $p_{\rm T}^{\mu}$ cut) (pb) | 20.64                | 9.81×10 <sup>3</sup> |
| # events                                                                             | 200 000              | 1000                 |

#### JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress




|                                                                                      | pН                   | PbH                   |
|--------------------------------------------------------------------------------------|----------------------|-----------------------|
| Photon-emitter                                                                       | proton               | Lead                  |
| $\sigma_{J/\psi}^{tot}$ (pb)                                                         | $1.18 \times 10^{3}$ | $276.77 \times 10^3$  |
| $\sigma_{J/\psi \to l^+ l^-}$ (pb)                                                   | 70.10                | $16.50 \times 10^{3}$ |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ cut) (pb)                       | 20.65                | 9.81×10 <sup>3</sup>  |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ and $p_{\rm T}^{\mu}$ cut) (pb) | 20.64                | 9.81×10 <sup>3</sup>  |
| # events                                                                             | 200 000              | 1000                  |

#### JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress



|                                                                                      | pН                   | PbH                    |
|--------------------------------------------------------------------------------------|----------------------|------------------------|
| Photon-emitter                                                                       | proton               | Lead                   |
| $\sigma_{J/\psi}^{tot}$ (pb)                                                         | $1.18 \times 10^{3}$ | 276.77×10 <sup>3</sup> |
| $\sigma_{J/\psi \to l^+l^-}$ (pb)                                                    | 70.10                | $16.50 \times 10^{3}$  |
| $\sigma_{J/\psi \rightarrow l^+l^-}$ (with LHCb $\eta_{\mu}$ cut) (pb)               | 20.65                | 9.81×10 <sup>3</sup>   |
| $\sigma_{J/\psi \to l^+l^-}$ (with LHCb $\eta_{\mu}$ and $p_{\rm T}^{\mu}$ cut) (pb) | 20.64                | 9.81×10 <sup>3</sup>   |
| # events                                                                             | 200 000              | 1000                   |

#### JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress



J.P. Lansberg (IPNO)

AFTER@LHC

April 17, 2018 22 / 24

# Part IV

# Conclusion

J.P. Lansberg (IPNO)

AFTER@LHC

E ► 4 E ► E ∽ Q C
April 17, 2018 23 / 24

イロト イヨト イヨト イヨト

#### • Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

イロト イヨト イヨト

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• The nucleon spin and the transverse dynamics of the partons

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

• 2 ways towards fixed-target collisions with the LHC beams

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

• In synergy with & under the advice of the conveners of the CERN Physics Beyond Collider working group [pbc.web.cern.ch], we now prepare a document on the fixed-target physics at the LHC

J.P. Lansberg (IPNO)

AFTER@LHC

# Part V

# Backup slides

J.P. Lansberg (IPNO)

AFTER@LHC

E ► 4 E ► E ∽ Q C
April 17, 2018 25 / 24

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

#### Heavy-Ion Physics

- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s<sub>NN</sub> = 115 GeV and Pb+p collisions at √s<sub>NN</sub> = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

#### Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

#### Hadron structure

- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η<sub>c</sub> production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
   By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon
  - by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of Ξ<sub>cc</sub> at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

#### Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al. [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

#### Generalities

 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

J.P. Lansberg (IPNO)

AFTER@LHC

April 17, 2018 29 / 24