COMPASS facility beyond 2020

Barbara Badelek University of Warsaw

On behalf of COMPASS Collaboration

Kobe, April 16 - 20, 2018

Acceptance of SIDIS experiments

EIC limits:
$$\sqrt{s}$$
 = 140 GeV, y = 0.9 \sqrt{s} = 40 GeV, y = 0.1

Full lines: y = 0.1 and y = 0.1 boundaries; dashed – low W^2 boundaries

CERN-SPSC-2017-034

Versatile COMPASS facility in the EHN2 at CERN

COMPASS Spectrometer (muon run)

Nucl. Instr. Meth. A577 (2007) 455 Two stages Calorimetry Particle identification (Muon Walls, RICH) Large, solid state polarised targets: ⁶LiD, NH₃ Trigger Hodoscopes Liquid H₂ and nuclear targets Beams: 160 (200) GeV μ^{\pm} 190 GeV hadrons ECALS & HCALS $2(1) \cdot 10^8 / \text{spill}$ MWPCs SM2 RICHSM1 Drift Chambers target 160 GeV H SciFi

COMPASS data taking until now

COMPASS I	2002 – 2004	nucleon structure μ –d, 160 GeV, L and T polarised target						
	2005	CERN accelerator shutdown, increase of acceptance						
	2006 2007 2008 – 2009 2010 2011 2012	nucleon structure μ –d, 160 GeV, L polarised target nucleon structure μ –p, 160 GeV, L and T polarised target hadron spectroscopy nucleon structure μ –p, 160 GeV, T polarised target nucleon structure μ –p, 200 GeV, L polarised target Primakoff reaction; DVCS/SIDIS test						
	2013	CERN accelerator shutdown, LS1						
COMPASS II	2014 2015 2016 – 2017 2018	Drell-Yan π –p reaction with T polarised target (test) Drell-Yan π –p reaction with T polarised target DVCS/SIDIS μ –p, 160 GeV, unpolarised target Drell-Yan π –p reaction with T polarised target						
	2019 – 2020	CERN accelerator shutdown, LS2						
Ì	After 2020:	This talk						

Future: CERN accelerator schedule

COMPASS: the future

- Short term plans (immediately after LS2): extension of COMPASS II; proposal addendum → SPSC:
 - one year (2021) SIDIS run with muons and \bot polarised deuterium target; tests for the $\mu p \! \to \mu p$
- Long term plans for future COMPASS-like experiment (> 2021):
 - ⇒ Lol to appear soon (in 2018)
 - renewed COMPASS-based collaboration
 - proton radius measurement in $\mu p \rightarrow \mu p$
 - muon and hadron (π, K, \bar{p}) beams
 - \bullet conventional- and newly designed RF-separated K and $\bar{\rm p}$ beams
 - 7-8 year endeavour
- Planning began in March 2016: "Beyond 2020" workshop at CERN
- Intertwined with "Physics Beyond Colliders" initiative at CERN (Sept. 2016); assessment by the European Strategy Group expected in 2020.

Short term COMPASS future

with transversely polarised deuterium target (to commence in 2021, directly after LS2)

CERN-SPSC-2017-034

Short term COMPASS future:

Deuteron transversity h_1^d and TMDs via SIDIS

- lacktriangle Goal: measurement of h_1^d , h_1^p and TMD PDFs for separate flavours
- Optimal separation \Longrightarrow comparable statistics on d (6 LiD) and p (NH₃) targets
- COMPASS d data sets have 4 times less statistics than p: cf an example below

CERN-SPSC-2017-034

Curves: fits to COMPASS+HERMES +Belle (only for transversity)

Conclusion: increase the d data set.

Short term COMPASS future:

h_1^d , TMDs and other SIDIS measurements

ullet After LS2, one year (150 days) SIDIS at 160 GeV/c, with $oldsymbol{\perp}$ polarised 6 LiD target Apparatus upgrade: practically only increase of the target cells diameter

Expected for asymmetries: $\sigma^d = 8.06 \times \sigma^p$.

$$\begin{split} \sigma_{\mathrm{stat.}}^{d} &\approx 0.6 \times \sigma_{\mathrm{stat.}}^{p}, \\ \mathrm{Cf.} & \ x h_{1}^{u_{v}}(x), x h_{1}^{d_{v}}(x) & \Longrightarrow \end{split}$$

- transversity and Sivers PDFs
- full set of TSAs for the d data
- determination of the (truncated) nucleon tensor charge

$$g_T = \delta u - \delta d \quad \text{where} \quad \delta q(Q^2) = \int_{x_{min}}^{x_{max}} \mathrm{d}x \left[h_1^q(x,Q^2) - h_1^{\bar{q}}(x,Q^2) \right],$$

with accuracy 2× better than now (± 0.044 vs ± 0.087).

- \bullet hard exclusive production of ρ and ω mesons
- g₂ structure function
- Complementary data: JLab12 for p,n but for 0.1 < x < 0.6

Long term COMPASS future

preparations for proton radius measurements in $\mu p \rightarrow \mu p$ scattering (to commence >2021)

CERN-SPSC-2017-034

Proton radius measurement using $\mu p \rightarrow \mu p$

Definition of the proton electric charge radius:

$$\langle r_E^2 \rangle = -6\hbar^2 \frac{dG_E(Q^2)}{dQ^2} \bigg|_{Q^2 = 0}$$

- Proton radius puzzle since a decade in e/μ spectroscopy and e scattering
- Reason still not clear see examples ⇒
- Missing piece: muon scattering needed!
 - \Longrightarrow MUSE @ PSI ($E_{\mu}\lesssim~$ 0.5 GeV),
 - \Longrightarrow COMPASS (high energy E_{μ})

Goal of COMPASS:

 $\Delta r_E \lesssim ext{ than 0.01 fm}$ in 180 days beam time

Pohl, FFK2017

Beyer et al., Science 358 (2017) 79

Short term COMPASS future: preparation for $\mu p \rightarrow \mu p$ Advantages of the high energy muon beam

Muon beam of about 100 GeV energy:

- momentum transfers of about 5 MeV/c
- radiative corrections

 ≪ than for electron beam (cf. JLab)
- at high energies Coulomb scattering angles
 ≪ than at low energies (cf. MUSE)
- muon energy loss negligible

Measurement of the elastic reaction

- $\sigma(Q^2)$ measured for $10^{-4} \lesssim Q^2/({\rm GeV}/c)^2 \lesssim 0.1$
- trigger on a proton recoil and muon kink
- active high-pressure hydrogen TPC target (IKAR, A. Vorobyev, St. Petersburg)
 - + possibly also an active SciFi target

Target region

r_p experiment: TPC prototype at the test position

Long term COMPASS future

hadron physics with standard muon and hadron beams (after 2021)

Letter of Intent coming soon!

Long term COMPASS future hadron physics with standard μ and hadron beams

- Proton radius measurement using $\mu p \rightarrow \mu p$
- **2** New Drell-Yan experiment with 190 GeV π^{\pm} beams and C, W targets
 - Determine pion valence and sea quark distributions (both π beams charges)
 - Study direct photons and charmonium \Longrightarrow gluons in π
 - Study flavour dependent nuclear effects (2 beam charges, 2 targets: C, W)
 - Important: good beam charge balance and PID in beams

Long term COMPASS future hadron physics with standard μ and hadron beams...

- **3** Exclusive reactions with μ beam and \perp polarised proton target: GPD E measurement \implies total $L_{\rm partons}$
 - Now COMPASS measures H; \perp polarised proton target will give E $\mu p^{\uparrow} \rightarrow \mu p \gamma$, $\mu p^{\uparrow} \rightarrow \mu \rho(\omega) p$

A flagship of JLab12 programme but in the valence region

Long term COMPASS future

hadron physics with RF-separated hadron beams (after 2021)

Letter of Intent coming soon!

RF-separated hadron beams

Panofsky-Schnell system with two RF cavities

P. Bernard et al., CERN 68-29

- Particles a,w are momentum-analysed
- Transverse kick by RF1 compensated/amplified by RF2
- Selection of a particle by selecting phase difference, $\Delta \phi$, e.g. $\Delta \phi_{\pi p}$:
 - $\Delta \phi = 2\pi (L_{12}f/c)(\beta_a^{-1} \beta_w^{-1}) \text{ for large } p: \ \beta_a^{-1} \beta_w^{-1} = (m_a^2 m_w^2)/2p^2$
- L_{12} should increase as p^2 at given f; this limits beam momentum
- \bullet Expectations before further R & D: $\mathrm{p_{K}}\sim$ 80 GeV, $\mathrm{p_{\bar{p}}}\sim$ 110 GeV beams
- Intensity gains: \sim 80 for K, \sim 50 for \bar{p} beams (standard h⁻ beam is \sim 97% pions, \sim 2.5% kaons, \sim 0.5% antiprotons).

Kaon spectroscopy with kaon beam

[COMPASS LoI]

Diffractive production $K^- p \rightarrow K^- \pi^+ \pi^- p$

COMPASS can take a lead for *K*-spectroscopy

- Many kaonic states require confirmation and further studies
- COMPASS has collected $\sim 10^6$ $K^- p \rightarrow K^- \pi^+ \pi^- p$ \Rightarrow the analysis in progress
- We are aiming for 50M/y with the RF separated beam
 - \Rightarrow access for novel methods
- Requires uniform PID in a broad kinematic range

RF separated beam - Drell-Yan (i)

RF separated antiproton/kaon beam, the maximal possible beam intensity (very rough estimate) of ~3-4x10⁷ /s can be reached (antiprotons) and ~8x10⁶ /s (kaons)

Assuming flux of $1x10^7$ /s for kaon/antiproton, background free high mass range $4 < M_{\mu\mu} < 9$ GeV/ c^2 and 140 days of data taking with the efficiency of 2015 Drell-Yan Run.

	NH ₃	Al (7cm)	W	NA3	NA10	E537	E615
K^- beam	14,000	2,800	29,600	700			
\overline{p} beam	15,750	2,750	22,500			387	

The overall gain for RF separated beam compare to previous experiments is factor 50 to 100

Courtesy of Oleg Denisov, Trento, Nov. 2017

General features of a planned Drell-Yan experiment

- The Drell-Yan cross sections are very small
 ⇒ high luminosities needed
- An isoscalar target, possibly light is preferable
- $\mu^+\mu^-$ angles may be large \Longrightarrow large acceptance needed
- Incident hadrons separated from a beam ⇒ particle identification is crucial
- There is a copious forward production of hadrons ⇒ an (active) hadron absorber must be placed there, see e.g.
 BabyMIND detector M. Antonova et al., arXiv:1704.08079

with W-Si detectors as in BNL (Phenix, AnDY):

- very compact
- good tracking resolution
- momentum measurement
- large acceptance, $\theta_{\mu\mu} > 250$ mrad

RF-separated beam: kaon induced Drell-Yan

- A source of information on kaon structure (PDFs), presently unknown
- Kaons have heavier valence quarks ⇒ expect less glue in K
- RF-separated beams only 30–50% purity
- Sea-valence separation needs 3:1 time sharing between K⁺, K⁻.

Two-year run gives PDF precision as in the pion

projections: 140 days; 100 GeV; C target

RF-separated beam: antiproton induced Drell-Yan

- DY with antiprotons on \bot polarised protons are ideal for TMD PDFs in the nucleon; no uncertainties due to π structure
- \bar{p} -induced DY has a cross section higher than π -induced DY
- A new, active absorber with di-electron and di-muon tracking, covering wide angle, ±250 mrad planned.
- Statistics for 140 days and active absorber

Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c ²)	DY events $\mu^+\mu^- e^+e^-$	
This exp.	110cm NH ₃	Ρ̄	3.5×10^7	100 120 140	4.0 - 8.5 4.0 - 8.5 4.0 - 8.5	28,000 40,000 52,000	21,000 27,300 32,500

Requirements for the long term programme

Program	Beam Energy [GeV]	Beam Intensity [/s]	Trigger Rate [kHz]	Beam Type	Target	S?	Hardware Additions	R?	C?
Proton radius	100	4 · 10 ⁶	100	μ^{\pm}	high-pr. H2	×	active TPC, SciFi trigger, silicon veto		
GPD E	160	107			recoil silicon, modified PT magnet				
Anti-matter	190	5 · 10 ⁵	25	p	LH2, LHe	×	recoil TOF	×	×
Spectroscopy p	12, 20	5 · 10 ⁷	25	\overline{P}	LH2		target spectrometer: tracking, calorimetry	×	×
Drell-Yan conv	190	7 · 10 ⁷	25	π^\pm	C/W	×	vertex detector		×
Drell-Yan RF	~100	108	25-50	K^{\pm}, \overline{p}	6LiD↑, C/W		"active absorber", vertex detector		×
Primakoff	~100	5 · 10 ⁶	> 10	K-	Ni	×		×	×
Prompt photon	100	5 · 10 ⁶	10-100	<i>K</i> +	LH2	×	hodoscope		×
Spectroscopy K-	50-100	4 · 10 ⁶	25	K-	LH2	×	recoil TOF	×	×

[&]quot;S" - standard COMPASS spectrometer, "R" - RICH1 (RICH0 ?), "C" - CEDARs

Outlook

- COMPASS facility is very successful in studies of nucleon structure and spectroscopy.
- "COMPASS Beyond 2020" (March 2016) and
 "Physics Beyond Colliders" (ongoing from Sept. 2016) workshops at CERN reveal a strong and active interest of the community in this physics.
- COMPASS submitted to SPSC a short-term proposal addendum, > LS2
 effective after LS2 and concerning a SIDIS on d[↑]
 and tests for the proton radius measurements.
- COMPASS will soon present a Letter-of-Intent concerning the long-term future with a rich programme, chiefly on the D-Y physics and hadron spectroscopy. Apart of existing muon and hadron, new RF-separated K and \(\bar{p}\) beams open new possibilities in hadron structure studies.
- New groups are welcome to join and contribute!

SPARES

Partonic structure of the nucleon; TMD distribution functions

- In LT and considering $k_{\rm T}$, 8 PDF describe the nucleon ⇒ Transverse Momentum Dependent PDF
- QCD-TMD approach valid if $k_{\rm T} \ll \sqrt{Q^2}$ (TMD factorisation)
- After integrating over k_T only 3 survive: f_1, g_1, h_1
- TMD accessed in SIDIS and DY by measuring azimuthal asymmetries with different angular modulations
- SIDIS: e.g. $A_{\text{Sivers}} \propto \text{PDF} \otimes \text{FF}$
- DY: e.g. $A_{\mathrm{Sivers}} \propto \mathsf{PDF}^{\mathrm{beam}} \otimes \mathsf{PDF}^{\mathrm{target}}$
- OBS! Boer-Mulders and Sivers PDF are T-odd, i.e. process dependent

$$h_1^{\perp}(SIDIS) = -h_1^{\perp}(DY)$$

$$h_1^{\perp}(\mathrm{SIDIS}) = -h_1^{\perp}(\mathrm{DY}) \qquad \qquad f_{1\mathrm{T}}^{\perp}(\mathrm{SIDIS}) = -f_{1\mathrm{T}}^{\perp}(\mathrm{DY})$$

TMD parton distributions need TMD Fragmentation Functions!

Access GPD through the DVCS/DVMP mechanism

$$\begin{array}{ccc} Q^2 \rightarrow \infty, \\ \text{fixed } x_{\mathrm{B}}, t & \Longrightarrow & |t|/Q^2 \text{ small} \end{array}$$

- 4 GDPs (H, E, H, E) for each flavour and for gluons plus 4 chiral odd ones $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$
- DVMP: factorisation proven for σ_L only
- All depend on 4 variables: x, ξ, t, Q^2 ; DIS @ $\xi = t = 0$; Later Q^2 dependence omitted. Careful! Here $x \neq x_B$!
- H, H conserve nucleon helicity E, \widetilde{E} flip nucleon helicity
- H, E refer to unpolarised distributions $\widetilde{H},\widetilde{E}$ refer to polarised distributions
- $H^q(x,0,0) = q(x), \ \widetilde{H}^q(x,0,0) = \Delta q(x)$
- H, E accessed in vector meson production $via\ A_{UT}$ asymmetries
- ullet \widetilde{H} , \widetilde{E} accessed in pseudoscalar meson production via A_{UT} asymmetries
- All 4 accessed in DVCS (γ production) in $A_C, A_{LU}, A_{UT}, A_{UL}$
- Integrals of H, E, H, E over x give Dirac-, Pauli-, axial vector- and pseudoscalar vector form factors respectively.
- $\bullet \ \ \text{Important:} \ J_z^q = \frac{1}{2} \int dx \ x \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right] = \frac{1}{2} \Delta \Sigma + L_z^q \quad \text{(X. Ji)}$

DVCS/DVMP: $\mu p \rightarrow \mu p \gamma(M)$; observables

$$d\sigma^{\mu p \to \mu p \gamma} = d\sigma^{\rm BH} + (d\sigma^{\rm DVCS}_{\rm unpol} + P_{\mu} d\sigma^{\rm DVCS}_{\rm pol}) + e_{\mu} ({\rm Re}I + P_{\mu} {\rm Im}I)$$

Observables (Phase 1):

•
$$S_{\text{CS,U}} \equiv \mu^{+\leftarrow} + \mu^{-\rightarrow} = 2 \left(d\sigma^{\text{BH}} + d\sigma^{\text{DVCS}}_{\text{unpol}} + e_{\mu} P_{\mu} \text{Im} I \right)$$

$$D_{\text{CS,U}} \equiv \mu^{+\leftarrow} - \mu^{-\rightarrow} = 2 \left(P_{\mu} d\sigma_{\text{pol}}^{\text{DVCS}} + e_{\mu} \text{Re} I \right)$$

$$A_{\text{CS,U}} \equiv \frac{\mu^{+\leftarrow} - \mu^{-\rightarrow}}{\mu^{+\leftarrow} + \mu^{-\rightarrow}} = \frac{D_{\text{CS,U}}}{S_{\text{CS,U}}}$$

• Each term ϕ -modulated If ϕ -dependence integrated over \Longrightarrow twist-2 DVCS contribution; if ϕ -dependence analysed: \Longrightarrow Im (F_1H) and Re (F_1H) ; H dominance @ COMPASS kin.

Analogously for transversely polarised target (Phase 2): $S_{\text{CS},T}, D_{\text{CS},T}, A_{\text{CS},T} \Longrightarrow E$