Towards the N^3LO evolution of parton distributions

Takahiro Ueda

Seikei University

S. Moch, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt

Hamburg now ETH Nikhef Liverpool

19 April 2018
Kobe Convention Center
DIS 2018
This talk is about 4-loop splitting functions governing evolution of N^3LO parton distribution functions

DGLAP equation:

\[
\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_j \left[P_{ij}(a_s(\mu^2)) \otimes f_j(\mu^2) \right](x)
\]

\[
P_{ij} = a_s P_{ij}^{(0)} + a_s^2 P_{ij}^{(1)} + a_s^3 P_{ij}^{(2)} + a_s^4 P_{ij}^{(3)} + ...
\]

Do we need this order?
Introduction

This talk is about 4-loop splitting functions governing evolution of N^3LO parton distribution functions

DGLAP equation:

$$\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_j \left[P_{ij}(a_s(\mu^2)) \otimes f_j(\mu^2) \right](x)$$

$$P_{ij} = a_s P_{ij}^{(0)} + a_s^2 P_{ij}^{(1)} + a_s^3 P_{ij}^{(2)} + a_s^4 P_{ij}^{(3)} + \ldots$$

Do we need this order?
This talk is about 4-loop splitting functions governing evolution of N^3LO parton distribution functions.

DGLAP equation:

$$\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_j \left[P_{ij}(a_s(\mu^2)) \otimes f_j(\mu^2) \right](x)$$

$$P_{ij} = a_s P_{ij}^{(0)} + a_s^2 P_{ij}^{(1)} + a_s^3 P_{ij}^{(2)} + a_s^4 P_{ij}^{(3)} + \ldots$$

Do we need this order?
Introduction

This talk is about 4-loop splitting functions governing evolution of N^3LO parton distribution functions.

DGLAP equation:

$$\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_j \left[P_{ij}(a_s(\mu^2)) \otimes f_j(\mu^2) \right](x)$$

$$P_{ij} = a_s P_{ij}^{(0)} + a_s^2 P_{ij}^{(1)} + a_s^3 P_{ij}^{(2)} + a_s^4 P_{ij}^{(3)} + ...$$

Do we need this order?
This talk is about 4-loop splitting functions governing evolution of N^3LO parton distribution functions.

DGLAP equation:

$$\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_j \left[P_{ij}(a_s(\mu^2)) \otimes f_j(\mu^2) \right](x)$$

$$P_{ij} = a_s P_{ij}^{(0)} + a_s^2 P_{ij}^{(1)} + a_s^3 P_{ij}^{(2)} + a_s^4 P_{ij}^{(3)} + \ldots$$

Do we need this order? Yes!
Precision physics at the LHC

No signals beyond the SM
Breakthrough would come from precision physics(?)

NNLO QCD corrections calculated for many processes

Even N^3LO, e.g., inclusive $gg \rightarrow H$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger ’16

N^3LO inclusive DIS: Moch, Vermaseren, Vogt ’05; for F_3 ’08
N^3LO inclusive VBF Higgs: Dreyer, Karlberg ’16
N^3LO jet production in DIS: Currie, Gehrmann, Glover, Huss, Niehues, Vogt ’18
Precision physics at the LHC

No signals beyond the SM
Breakthrough would come from precision physics(?)

NNLO QCD corrections calculated for many processes

Even $N^3\text{LO}$, e.g., inclusive $gg \rightarrow H$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger '16

$N^3\text{LO}$ inclusive DIS: Moch, Vermaseren, Vogt '05; for F_3 '08
$N^3\text{LO}$ inclusive VBF Higgs: Dreyer, Karlberg '16
$N^3\text{LO}$ jet production in DIS: Currie, Gehrmann, Glover, Huss, Niehues, Vogt '18
Precision physics at the LHC

No signals beyond the SM
Breakthrough would come from precision physics(?)

NNLO QCD corrections calculated for many processes

Even N^3LO, e.g., inclusive $gg \rightarrow H$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger ’16

N^3LO inclusive DIS: Moch, Vermaseren, Vogt ’05; for F_3 ’08
N^3LO inclusive VBF Higgs: Dreyer, Karlberg ’16
N^3LO jet production in DIS: Currie, Gehrmann, Glover, Huss, Niehues, Vogt ’18
Missing N^3LO PDFs

N^3LO $gg \rightarrow H$ computed with NNLO PDFs

<table>
<thead>
<tr>
<th>δ(scale)</th>
<th>δ(trunc)</th>
<th>δ(PDF-TH)</th>
<th>δ(EW)</th>
<th>$\delta(t, b, c)$</th>
<th>$\delta(1/m_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+0.10$ pb, -1.15 pb</td>
<td>± 0.18 pb</td>
<td>± 0.56 pb</td>
<td>± 0.49 pb</td>
<td>± 0.40 pb</td>
<td>± 0.49 pb</td>
</tr>
<tr>
<td>$+0.21%$, $-2.37%$</td>
<td>$\pm 0.37%$</td>
<td>$\pm 1.16%$</td>
<td>$\pm 1%$</td>
<td>$\pm 0.83%$</td>
<td>$\pm 1%$</td>
</tr>
</tbody>
</table>

Anastasiou et al. ’16

Ideally, N^3LO analyses must be performed with PDFs fitted at the N^3LO accuracy.

Need 4-loop splitting functions
Missing N^3LO PDFs

N^3LO $gg \rightarrow H$ computed with NNLO PDFs

<table>
<thead>
<tr>
<th>δ(scale)</th>
<th>δ(trunc)</th>
<th>δ(PDF-TH)</th>
<th>δ(EW)</th>
<th>$\delta(t, b, c)$</th>
<th>$\delta(1/m_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+0.10\text{ pb}$</td>
<td>-1.15 pb</td>
<td>$\pm0.18\text{ pb}$</td>
<td>$\pm0.56\text{ pb}$</td>
<td>$\pm0.49\text{ pb}$</td>
<td>$\pm0.49\text{ pb}$</td>
</tr>
<tr>
<td>$+0.21%$</td>
<td>$-2.37%$</td>
<td>$\pm0.37%$</td>
<td>$\pm1.16%$</td>
<td>$\pm1%$</td>
<td>$\pm0.83%$</td>
</tr>
</tbody>
</table>

Anastasiou et al. '16

Ideally, N^3LO analyses must be performed with PDFs fitted at the N^3LO accuracy

Need 4-loop splitting functions
Missing N^3LO PDFs

N^3LO $gg \rightarrow H$ computed with NNLO PDFs

<table>
<thead>
<tr>
<th>δ(scale)</th>
<th>δ(trunc)</th>
<th>δ(PDF-TH)</th>
<th>δ(EW)</th>
<th>$\delta(t, b, c)$</th>
<th>$\delta(1/m_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+0.10$ pb</td>
<td>-1.15 pb</td>
<td>± 0.18 pb</td>
<td>± 0.56 pb</td>
<td>± 0.49 pb</td>
<td>± 0.49 pb</td>
</tr>
<tr>
<td>$+0.21%$</td>
<td>$-2.37%$</td>
<td>$\pm 0.37%$</td>
<td>$\pm 1.16%$</td>
<td>$\pm 1%$</td>
<td>$\pm 0.83%$</td>
</tr>
</tbody>
</table>

Anastasiou et al. '16

from missing
N^3LO PDFs

Ideally, N^3LO analyses must be performed with PDFs fitted at the N^3LO accuracy

Need 4-loop splitting functions
Missing N^3LO PDFs

N^3LO $gg \rightarrow H$ computed with NNLO PDFs

<table>
<thead>
<tr>
<th>δ(scale)</th>
<th>δ(trunc)</th>
<th>δ(PDF-TH)</th>
<th>δ(EW)</th>
<th>$\delta(t, b, c)$</th>
<th>$\delta(1/m_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+0.10$ pb</td>
<td>± 0.18 pb</td>
<td>± 0.56 pb</td>
<td>± 0.49 pb</td>
<td>± 0.40 pb</td>
<td>± 0.49 pb</td>
</tr>
<tr>
<td>-1.15 pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$+0.21%$</td>
<td>$\pm 0.37%$</td>
<td>$\pm 1.16%$</td>
<td>$\pm 1%$</td>
<td>$\pm 0.83%$</td>
<td>$\pm 1%$</td>
</tr>
<tr>
<td>$-2.37%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anastasiou et al. '16

Ideally, N^3LO analyses must be performed with PDFs fitted at the N^3LO accuracy

Need 4-loop splitting functions
Computing splitting functions

\(N \)-th Mellin moment of the splitting function \(P_{ab}(x) \)

\[
\gamma_{ab}(N) = - \int_0^1 dx \, x^{N-1} P_{ab}(x)
\]

can be computed by (poles of) massless propagator-type integrals with \(N \)-dependence (details later)

\[
\sum Q \quad N
\]

Full \(x \)-dependence can be obtained if full \(N \)-dependence is computed

3-loop full-\(N \) (hence full-\(x \)): Moch, Vermaseren, Vogt '04; for polarized '14

4-loop full \(N \)-dependence is too difficult...
Computing splitting functions

\(N \)-th Mellin moment of the splitting function \(P_{ab}(x) \)

\[
\gamma_{ab}(N) = - \int_0^1 dx \, x^{N-1} P_{ab}(x)
\]

can be computed by (poles of) massless propagator-type integrals with \(N \)-dependence (details later)

\[
\sum \sum_{N}^{Q} \quad \quad

Computing splitting functions

N-th Mellin moment of the splitting function $P_{ab}(x)$

$$
\gamma_{ab}(N) = - \int_{0}^{1} dx \, x^{N-1} P_{ab}(x)
$$

can be computed by (poles of) massless propagator-type integrals with N-dependence (details later)

$$
\sum_{Q} Q^N
$$

Full x-dependence can be obtained if full N-dependence is computed

3-loop full-N (hence full-x): Moch, Vermaseren, Vogt ’04; for polarized ’14

4-loop full N-dependence is too difficult...
Computing splitting functions

Fix $N = 2, 4, 6, ...$
→ Just massless propagator-type integrals

\[\sum Q \quad (\text{fixed } N) \]

Computable at 4-loops

From values at fixed N
we could get approximation
or reconstruction

3-loop: exact vs. approx.
(non-singlet, n_f-independent part)
Computing splitting functions

Fix $N = 2, 4, 6, \ldots$
\rightarrow Just massless propagator-type integrals

$$\sum Q \quad \text{(fixed } N\text{)}$$

Computable at 4-loops

From values at fixed N
we could get approximation
or reconstruction
Computing splitting functions

Fix $N = 2, 4, 6, ...$
→ Just massless propagator-type integrals
\[\sum_Q (\text{fixed } N) \]

Computable at 4-loops

From values at fixed N we could get approximation or reconstruction

3-loop: exact vs. approx.
(non-singlet, n_f-independent part)
The Forcer program

Analytically performs 4-loop massless propagator-type integrals

Ruijl, TU, Vermaseren ’17; https://github.com/benruijl/forcer
Works with FORM 4.2; https://github.com/vermaseren/form
cf. Mincer (3-loop): Gorishnii et al. ’89; Larin, Tkachov, Vermaseren ’91

Example:

\[
\int d^Dp_1 d^Dp_2 d^Dp_3 d^Dp_4 \frac{(2Q \cdot p_2)^{-n_{12}}(2p_1 \cdot p_4)^{-n_{13}}(2Q \cdot p_3)^{-n_{14}}}{(p_1)^{n_{11}}(p_3)^{n_{12}}}
\]

Performance: 4-loop QCD \(\beta\)-function < 3 min.

(background field method, \(\xi = 0\), modern 32 core machine)
The Forcer program

Analytically performs 4-loop massless propagator-type integrals

Ruijl, TU, Vermaseren ’17; https://github.com/benruijl/forcer
Works with FORM 4.2; https://github.com/vermaseren/form
cf. Mincer (3-loop): Gorishnii et al. ’89; Larin, Tkachov, Vermaseren ’91

Example:

\[
\int d^D p_1 d^D p_2 d^D p_3 d^D p_4 \frac{(2Q \cdot p_2)^{-n_{12}} (2p_1 \cdot p_4)^{-n_{13}} (2Q \cdot p_3)^{-n_{14}}}{(p_1)^{n_1} \cdots (p_{11})^{n_{11}}}
\]

Performance: 4-loop QCD β-function < 3 min.

(background field method, $\xi = 0$, modern 32 core machine)
The Forcer program

Analytically performs 4-loop massless propagator-type integrals

Ruijl, TU, Vermaseren ’17; https://github.com/benruijl/forcer
Works with FORM 4.2; https://github.com/vermaseren/form
cf. Mincer (3-loop): Gorishnii et al. ’89; Larin, Tkachov, Vermaseren ’91

Example:

\[\int d^D p_1 d^D p_2 d^D p_3 d^D p_4 \frac{(2Q \cdot p_2)^{-n_{12}} (2p_1 \cdot p_4)^{-n_{13}} (2Q \cdot p_3)^{-n_{14}}}{(p_1)^{n_1} \ldots (p_{11})^{n_{11}}} \]

Performance: 4-loop QCD β-function < 3 min.

(background field method, $\xi = 0$, modern 32 core machine)
Method I

Harmonic projection to probe-parton forward scattering

\[Q^\{\mu_1 \ldots \mu_N\} \frac{1}{N!} \left[\frac{\partial^N}{\partial P^{\mu_1} \ldots \partial P^{\mu_N}} \right] \]

Pros:
Conceptually simple (computing physical amplitudes). Indeed, 3-loop splitting functions were computed in this way.

Cons:
Quickly becomes hard as \(N \) increases.

Gorishnii, Larin, Tkachev ’83; Gorishnii, Larin ’87
Method I

Harmonic projection to probe-parton forward scattering

\[
\frac{Q^{\{\mu_1 \ldots \mu_N\}}}{N!} \frac{\partial^N}{\partial P^{\mu_1} \ldots \partial P^{\mu_N}}
\]

\(Q^2 \neq 0 \quad P=0\)

Pros:
Conceptually simple (computing physical amplitudes). Indeed, 3-loop splitting functions were computed in this way

Cons:
Quickly becomes hard as \(N\) increases
Method I

Harmonic projection to probe-parton forward scattering

\[\frac{Q^\{\mu_1 \ldots \mu_N\}}{N!} \frac{\partial^N}{\partial Q^\mu_1 \ldots \partial Q^\mu_N} \]

Pros:
Conceptually simple (computing physical amplitudes). Indeed, 3-loop splitting functions were computed in this way

Cons:
Quickly becomes hard as N increases
Method II

Matrix elements of twist-2 DIS operators

\[P P P \]

Pros:
Milder increase of complexity as \(N \) increases

Cons:
Complicated Feynman rules, \((L + 2)\)-point vertices

\[G_\alpha^{\mu_1} D_{\mu_2} \ldots D_{\mu_{N-1}} G_{\mu_N}^\alpha \sim \]

Complicated renormalization: mixing of gauge-invariant operators and gauge-variant operators in the singlet sector

Hamberg, van Neerven ’91
Method II

Matrix elements of twist-2 DIS operators

Pros:
Milder increase of complexity as \(N \) increases

Cons:
Complicated Feynman rules, \((L+2)\)-point vertices

\[G_\alpha^{\mu_1} D^{\mu_2} ... D^{\mu_{N-1}} G^{\mu_N} \sim \]

Complicated renormalization: mixing of gauge-invariant operators and gauge-variant operators in the singlet sector

Hamberg, van Neerven ’91
Method II
Matrix elements of twist-2 DIS operators

Pros:
Milder increase of complexity as N increases

Cons:
Complicated Feynman rules, $(L + 2)$-point vertices

Complicated renormalization: mixing of gauge-invariant operators and gauge-variant operators in the singlet sector

Hamberg, van Neerven '91
Method II

Matrix elements of twist-2 DIS operators

\[P \rightarrow P \quad P^2 \neq 0 \]

Pros:
Milder increase of complexity as \(N \) increases

Cons:
Complicated Feynman rules, \((L + 2)\)-point vertices

\[G^{\{\mu_1 \} \sigma} \cdot D^{\mu_2} \cdots D^{\mu_{N-1}} G^{\mu_N} \sigma \sim \]

Complicated renormalization: mixing of gauge-invariant operators and gauge-variant operators in the singlet sector

Hamberg, van Neerven '91
Strategy

Compute N-th moments by Method I (forward scattering) as much as possible (Easy to debug)

Computed up to $N \leq 6$ at 4-loops in general
Confirmed known low-N non-singlet results ($N \leq 4$)
 Velizanin ’11 ’14; Baikov, Chetyrkin, Kühn, Rittinger

Up to $N > 40$ for high-n_f parts (DIS 2017 talk by Josha Davies)
Enough to reconstruct high-n_f parts

Switch to Method II (operator matrix element)
Debug it with low-N results obtained by Method I

New: Computed up to $N \leq 16$ for non-singlet
 Up to $N = 20$ for large-n_c parts
Enough to reconstruct large-n_c parts (non-singlet)
Strategy

Compute N-th moments by Method I (forward scattering) as much as possible (Easy to debug)

Computed up to $N \leq 6$ at 4-loops in general
Confirmed known low-N non-singlet results ($N \leq 4$)
 Velizanin ’11 ’14; Baikov, Chetyrkin, Kühn, Rittinger

Up to $N > 40$ for high-n_f parts (DIS 2017 talk by Josha Davies)
Enough to reconstruct high-n_f parts

Switch to Method II (operator matrix element)
Debug it with low-N results obtained by Method I

New: Computed up to $N \leq 16$ for non-singlet
 Up to $N = 20$ for large-n_c parts
Enough to reconstruct large-n_c parts (non-singlet)
Strategy

Compute N-th moments by Method I (forward scattering) as much as possible (Easy to debug)

Computed up to $N \leq 6$ at 4-loops in general
Confirmed known low-N non-singlet results ($N \leq 4$)
 Velizanin ’11 ’14; Baikov, Chetyrkin, Kühn, Rittinger

Up to $N > 40$ for high-n_f parts (DIS 2017 talk by Josha Davies)
Enough to reconstruct high-n_f parts

Switch to Method II (operator matrix element)
Debug it with low-N results obtained by Method I

New: Computed up to $N \leq 16$ for non-singlet
 Up to $N = 20$ for large-n_c parts
Enough to reconstruct large-n_c parts (non-singlet)
Strategy

Compute N-th moments by Method I (forward scattering) as much as possible (Easy to debug)

Computed up to $N \leq 6$ at 4-loops in general
Confirmed known low-N non-singlet results ($N \leq 4$)
 Velizanin ’11 ’14; Baikov, Chetyrkin, Kühn, Rittinger

Up to $N > 40$ for high-n_f parts (DIS 2017 talk by Josha Davies)
Enough to reconstruct high-n_f parts

Switch to Method II (operator matrix element)
Debug it with low-N results obtained by Method I

New: Computed up to $N \leq 16$ for non-singlet
 Up to $N = 20$ for large-n_c parts
Enough to reconstruct large-n_c parts (non-singlet)
Reconstructing full-\(N\) expression

Up to \(N = 20\) for non-singlet, large-\(n_c\)

\[\gamma_{NS}^\pm(N): (q_i \pm \bar{q}_i) - (q_k \pm \bar{q}_k)\]

Ansatz: if analogous to lower orders

\[\gamma_{NS}^{(n)}(N) = \sum_{w=0}^{2n+1} c_{0ow} S_w(N) + \sum_{a} \sum_{k=1}^{2n+1-\frac{k}{2}} \sum_{w=0}^{2n+1-k} c_{akw} \frac{S_w(N)}{(N + a)^k}\]

\(\gamma_{NS}\): constrained by ‘self-tuning’ (conjecture, conformal symmetry)

\(\gamma_{NS}^+ = \gamma_{NS}^-\) for large-\(n_c\)

Large-\(N\) and small-\(x\) limits

Small-\(x\) ressumation: known coefficients

\(N \leq 18\) Diophantine eqs. to fix remaining coefficients

Checked by \(N = 19, 20\)
Reconstructing full-N expression

Up to $N = 20$ for non-singlet, large-n_c

$\gamma_{NS}^{\pm}(N): (q_i \pm \bar{q}_i) - (q_k \pm \bar{q}_k)$

Ansatz: if analogous to lower orders

$$
\gamma_{NS}^{(n)}(N) = \sum_{w=0}^{2n+1} c_{OOW} S_w(N) + \sum_{a} \sum_{k=1}^{2n+1} \sum_{w=0}^{2n+1-k} c_{akw} \frac{S_w(N)}{(N + a)^k}
$$

γ_{NS}: constrained by ‘self-tuning’ (conjecture, conformal symmetry)

$\gamma_{NS}^+ = \gamma_{NS}^-$ for large-n_c

Large-N and small-x limits

Small-x ressumation: known coefficients

$N \leq 18$ Diophantine eqs. to fix remaining coefficients

Checked by $N = 19, 20$
Reconstructing full-N expression

Up to $N = 20$ for non-singlet, large-n_c

\[\gamma_{NS}^{\pm}(N) : (q_i \pm \bar{q}_i) - (q_k \pm \bar{q}_k) \]

Ansatz: if analogous to lower orders

\[\gamma_{NS}^{(n)}(N) = \sum_{w=0}^{2n+1} c_{OOW} S_w(N) + \sum_{a} \sum_{k=1}^{2n+1} \sum_{w=0}^{2n+1-k} c_{akw} \frac{S_w(N)}{(N + a)^k} \]

\[\gamma_{NS} : \text{constrained by ‘self-tuning’ (conjecture, conformal symmetry)} \]
\[\gamma_{NS}^+ = \gamma_{NS}^- \text{ for large-n_c} \]

Large-N and small-x limits

Small-x ressumation: known coefficients

$N \leq 18$ Diophantine eqs. to fix remaining coefficients

Checked by $N = 19, 20$
Reconstructing full-N expression

Up to $N = 20$ for non-singlet, large-n_c

$\gamma_{NS}^{\pm}(N): (q_i \pm \bar{q}_i) - (q_k \pm \bar{q}_k)$

Ansatz: if analogous to lower orders

$\gamma_{NS}^{(n)}(N) = \sum_{w=0}^{2n+1} c_{oow} S_w(N) + \sum_{a} \sum_{k=1}^{2n+1} \sum_{w=0}^{2n+1-k} c_{akw} \frac{S_w(N)}{(N + a)^k}$

γ_{NS}: constrained by ‘self-tuning’ (conjecture, conformal symmetry)

$\gamma_{NS}^+ = \gamma_{NS}^-$ for large-n_c

Large-N and small-x limits

Small-x ressumation: known coefficients

$N \leq 18$ Diophantine eqs. to fix remaining coefficients

Checked by $N = 19, 20$
Approximation for large-n_c suppressed terms

Remaining large-n_c suppressed terms (non-singlet)
90 resulting trial functions, parameters fixed from the first 8 moments, two representatives chosen that indicate the remaining uncertainty

Checked by the 9th moment, e.g., $P_{N,1}^{(3)} (N = 18)$:
$195.8888792_B \ < \ 195.8888857...$ exact $\ < \ 195.8888968_A$
NS splitting functions: NNLO vs N^3LO

\[P = \alpha_s p^{(0)} + \alpha_s^2 p^{(1)} + \alpha_s^3 p^{(2)} + \alpha_s^4 p^{(3)} + \ldots \]
q_{NS}^{\pm} evolution: NNLO vs N^3LO

Logarithmic derivatives w.r.t. the factorization scale

$$\dot{q} \equiv \frac{d \ln q}{d \ln \mu_f^2}$$

Reference point: $x q(x, \mu_0^2) = x^{0.5}(1 - x)^3$ with $\alpha_s(\mu_0^2) = 0.2$
q_{NS} evolution: renormalization scale dependence

\[\dot{q} \equiv \frac{d \ln q}{d \ln \mu_f^2} \]

$N^3\text{LO}$: stable
scale uncertainty below 1\% for $\mu_f/2 \leq \mu_r \leq 2\mu_f$
Status of singlet case

So far, up to \(N = 8 \) for \(\gamma_{qq}, \gamma_{gq} \) (yesterday),
up to \(N = 6 \) for \(\gamma_{qg}, \gamma_{gg} \) by forward scattering
Status of singlet case

So far, up to $N = 8$ for γ_{qq}, γ_{gq} (yesterday), up to $N = 6$ for γ_{qg}, γ_{gg} by forward scattering.

Preliminary
Summary and outlook

Precision physics at the LHC requires 4-loop splitting functions

\(\gamma_{NS}^{(3)}(N) \) reconstructed at large-\(n_c \) limit
Remaining large-\(n_c \) suppressed terms approximated
Approximate results for \(P_{NS}^{(3)}(x) \) enough for phenomenology

For more details (valence dist., fragmentation funcs., etc) see JHEP 1710 (2017) 041 [arXiv:1707.08315]

Singlet part: work in progress
Promissing renormalization scale stability
Summary and outlook

Precision physics at the LHC requires 4-loop splitting functions

\[\gamma^{(3)}_{NS}(N) \] reconstructed at large-\(n_c \) limit
Remaining large-\(n_c \) suppressed terms approximated
Approximate results for \(P^{(3)}_{NS}(x) \) enough for phenomenology

For more details (valence dist., fragmentation funcs., etc) see JHEP 1710 (2017) 041 [arXiv:1707.08315]

Singlet part: work in progress
Promising renormalization scale stability
Summary and outlook

Precision physics at the LHC requires 4-loop splitting functions

\[\gamma_{NS}^{(3)}(N) \] reconstructed at large-\(n_c \) limit
Remaining large-\(n_c \) suppressed terms approximated
Approximate results for \(P_{NS}^{(3)}(x) \) enough for phenomenology

For more details (valence dist., fragmentation funcs., etc) see JHEP 1710 (2017) 041 [arXiv:1707.08315]

Singlet part: work in progress
Promissing renormalization scale stability