Study of the nucleon structure through a global fit of partonic TMDs

Filippo Delcarro

In collaboration with A. Bacchetta, C. Pisano, M. Radici, A. Signori

INFN

3DSPIN: structure of the nucleon

Repl. $105\left(\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}\right)$
0.05
distribution of partons? $0.10 \quad x$
$\rho\left(\mathrm{GeV}^{-2}\right)$

Difference between flavors?

Does it get wider at low x ?
missing spin budget?

Orbital motion - Nucleon Structure from 1D to 3D

Generalized parton distribution (GPD)
Transverse momentum dependent parton distribution (TMD)

Transverse Momentum Distributions: TMD PDF

quark pol.
Unpolarized

dependence on:
longitudinal momentum fraction \boldsymbol{X} transverse momentum \boldsymbol{k}_{\perp} energy scale

nucleon tomography

High-energy phenomenology

Open questions :

1) what is the functional form of TMDs at low transverse momentum?
2) what is its kinematic and flavor dependence?
3) how can we separate the descriptions at low and high transverse momenta?
4) how can we match TMD and collinear factorization?
5) can we test the generalized universality of TMDs ?
6) can we perform a global fit of TMDs ?

Extraction from SIDIS \& Drell-Yan

Drell-Yan \Z production

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

TMDs: Fragmentation Function

quark pol.

TMD Fragmentation Functions
(TMD FFs)
dependence on:
longitudinal momentum fraction \mathbf{Z}
transverse momentum \boldsymbol{P}_{\perp}
energy scale

Structure functions and TMDs

multiplicities

$m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{D I S} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}$

$$
\begin{array}{r}
F_{U U, T}\left(x, z, P_{h T}^{2}, Q^{2}\right)=\sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d^{2} k_{T} d^{2} P_{T} f_{1}^{a}\left(x, k_{T}^{2} ; \mu^{2}\right) D_{1}^{h / a}\left(z, P_{T}^{2} ; \mu^{2}\right) \\
\cdot \delta^{2}\left(z k_{T}-P_{h T}+P_{T}\right)+Y_{U U, T}\left(Q^{2}, P_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)
\end{array}
$$

Structure functions and TMDs

At our accuracy level (LO-NLL)
 $$
\begin{gathered} \mathcal{H}_{U U, T} \simeq \mathcal{O}\left(\alpha_{s}^{0}\right) \\ Y_{U U, T}\left(Q^{2}, P_{h}^{2} T\right) \simeq 0 \end{gathered}
$$

$$
\begin{aligned}
F_{U U, T}\left(x, z, P_{h T}^{2}, Q^{2}\right)= & \sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d^{2} k_{T} d^{2} P_{T} f_{1}^{a}\left(x, k_{T}^{2} ; \mu^{2}\right) D_{1}^{h / a}\left(z, P_{T}^{2} ; \mu^{2}\right) \\
& \cdot \delta^{2}\left(z k_{T}-P_{h T}+P_{T}\right)+Y_{U U, T}\left(Q^{2}, P_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)
\end{aligned}
$$

Structure functions and TMDs

HERMES, $\mathrm{Q} \approx 1.5 \mathrm{GeV}$

Width of TMDs changes of one order of magnitude \rightarrow EVOLUTION

Evolved TMDs

Fourier transform: Et space

$\tilde{f}_{1}^{a}\left(x, \xi_{T} ; \mu^{2}\right)=$
nonperturbative part of evolution
$=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{\xi}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{\xi}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(\xi_{T}\right) \ln \left(\mu / \mu_{0}\right)} \hat{f}_{N P}^{a}\left(x, \xi_{T}\right)$
small $\mathrm{kT} \xrightarrow{\mathrm{pQCD}}$ large log. $\alpha_{S}^{n} \ln ^{2 n} \frac{Q^{2}}{k_{T}^{2}}+\ldots \rightarrow \begin{aligned} & \text { resummed in } \\ & \text { CSS formalism }\end{aligned}$ (energy dependence)

Evolved TMDs

Fourier transform: Et space

$\tilde{f}_{1}^{a}\left(x, \xi_{T} ; \mu^{2}\right)=$
nonperturbative part of evolution

Non-perturbative contributions have to be extracted from experimental data, after parametrization

Model: non perturbative elements

input TMD PDF ($\left.\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}\right)$
$\hat{f}_{N P}^{a}=\mathcal{F} . \mathcal{T}$. of

$$
(\underbrace{e^{-\frac{k_{T}^{2}}{g 1 a}}+\underbrace{\lambda k_{T}^{2} e^{-\frac{k_{T}^{2}}{g 1 a}}}) .}
$$

sum of two different gaussians
with kinematic dependence on transverse momenta
width x-dependence

$$
g_{1}(x)=N_{1} \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\begin{gathered}
N_{1} \equiv g_{1}(\hat{x}) \\
\hat{x}=0.1
\end{gathered}
$$

Model: non perturbative elements

Free parameters

$$
\begin{array}{cc}
N_{1}, \alpha, \sigma, \lambda & 4 \text { for TMD PDF } \\
N_{3}, N_{4}, \beta, \delta, \gamma, \lambda_{F} & 6 \text { for TMD FF }
\end{array}
$$

$$
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \begin{gathered}
1 \text { for NP contribution to } \\
\text { TMD evolution }
\end{gathered}
$$

In total we have 11 parameters, for intrinsic transverse momentum (4 PDFs, 6 FFs) and evolution (g2)

Evolution and br regions

$$
\mu_{b}=2 e^{-\gamma_{E}} / b_{*}
$$

alternative notation: ξ_{T}

$$
\bar{b}_{\star}\left(b_{T} ; b_{\min }, b_{\max }\right)=b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4}
$$

$$
\begin{aligned}
& b_{\max }=2 e^{-\gamma_{E}} \\
& b_{\min }=2 e^{-\gamma_{E}} / Q
\end{aligned}
$$

The importance of bmin is a signal that we are exiting the proper TMD region and approaching the region of collinear factorization, especially in SIDIS data at low Q

Experimental data

Z Production

90
data points

Experimental data

SIDIS eN
 1514

NEW: [Phys.Rev. D97 (2018) no.3, 032006]

Drell-Yan
dan onoms

Z Production

90
data points

Data selection and analysis

S.
$\mathrm{Q} 2>1.4 \mathrm{GeV}^{2}$
$0.2<\mathrm{z}<0.7$
$\mathrm{P}_{\mathrm{hT}}, \mathrm{q}_{\mathrm{T}}<\operatorname{Min}[0.2 \mathrm{Q}, 0.7 \mathrm{Qz}]+0.5 \mathrm{GeV}$

Motivations behind kinematical cuts

TMD factorization ($\mathrm{Ph}_{\mathrm{T}} / \mathrm{z} \ll \mathrm{Q}^{2}$)
Avoid target fragmentation (low z) and exclusive contributions (high z)

Experimental data

SIDIS $\mu \mathrm{N}$
6252
data points

Total: 8059 data

Z Production

90
data points

Data to be included

7 TeV 8 TeV

$$
q \bar{q} \rightarrow Z_{0} / \gamma^{*}+X
$$

$p p \rightarrow Z_{0} / \gamma^{*} \rightarrow\left(\mu^{+}+\mu^{-} / e^{+}+e^{-}\right)$

Hich

7 TeV
8 TeV
13 TeV

$$
p p \rightarrow Z_{0} \rightarrow \mu^{+}+\mu^{-}
$$

Data region

An almost global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 (+ JLab)	LO-NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059

[JHEP06(20I7)08I]

Summary of results

Total number of data points: 8059
Total number of free parameters: 11
$\rightarrow 4$ for TMD PDFs $\rightarrow 6$ for TMD FFs $\rightarrow 1$ for TMD evolution

$$
\chi^{2} / d . o f .=1.55 \pm 0.05
$$

COMPASS data SIDIS h^{+}

Observable
to avoid known problems with Compass data normalization:

$$
\frac{m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{m_{N}^{h}\left(x, z, \min \left[\boldsymbol{P}_{h T}^{2}\right], Q^{2}\right)}
$$

COMPASS data SIDIS h^{+}

NEW recent Data:
Observable:
[Phys.Rev. D97 (2018) no.3, 032006]

$$
\frac{m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{m_{N}^{h}\left(x, z, \min \left[\boldsymbol{P}_{h T}^{2}\right], Q^{2}\right)}
$$

Hermes data pion production

nembes
 π

- $\langle z\rangle=0.24$ (offset=5)
- $\langle z\rangle=0.28$ (offset=4)
$\Delta\langle z\rangle=0.34$ (offset=3)
$\checkmark\langle z\rangle=0.43$ (offset=2)
4 $\langle z\rangle=0.54$ (offset=1)
- $\langle z\rangle=0.70$ (offset=0)

$\chi^{2} /$ dof
4.83

Drell-Yan data

Q2 Evolution: The peak is now at about 1 GeV , it was at 0.4 GeV for SIDIS

Z-boson production data

normalization : fixed from DEMS fit, different from exp. (not really relevant for TMD parametrizations)
$\chi^{2} /$ dof $\quad 1.36$
I.II
2.00
1.73

Q2 Evolution: The peak is now at about 4 GeV
B

Best fit values

TMD PDFs	N_{1} $\left[\mathrm{GeV}^{2}\right]$	α	σ		λ $\left[\mathrm{GeV}^{-2}\right]$	
All replicas	0.28 ± 0.06	2.95 ± 0.05	0.17 ± 0.02		0.86 ± 0.78	
Replica 105 $]$	0.285	2.98	0.173		0.39	
TMD FFs	N_{3} $\left[\mathrm{GeV}^{2}\right]$	β	γ	δ	λ_{F} $\left[\mathrm{GeV}^{-2}\right]$	N_{4} $\left[\mathrm{GeV}^{2}\right]$
All replicas	0.21 ± 0.02	1.65 ± 0.49	2.28 ± 0.46	0.14 ± 0.07	5.50 ± 1.23	0.04 ± 0.01
Replica 105	0.212	2.10	2.52	0.094	5.29	0.04

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at $Q=1 \mathrm{GeV}$.

Flavor independent scenario:

$$
\begin{aligned}
& \mathrm{N}_{1}=0.28 \pm 0.06 \mathrm{GeV}^{2} \\
& \mathrm{~N}_{3}=0.21 \pm 0.02 \mathrm{GeV}^{2} \\
& \mathrm{~N}_{4}=0.04 \pm 0.01 \mathrm{GeV}^{2}
\end{aligned}
$$

$g_{2}=0.13 \pm 0.01 \mathrm{GeV}^{2}$
best value from 200 replicas
compatible with other extractions

Mean transverse momentum

Change in TMD width x-dependence

in TMD PDF

$$
\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}
$$

in TMD FF

Best fit value: transverse momenta

1Bacchetta, Delcarro, Pisano, Radici, Signori JHEP06(2017)081 Signori, Bacchetta, Radici, Schnell arXiv:1309.3507
Schweitzer, Teckentrup, Metz, arXiv:1003.2190
Anselmino et al. arXiv:1312.6261 [HERMES]
Anselmino et al. arXiv:1312.6261 [HERMES, high z]
Anselmino et al. arXiv:1312.6261 [COMPASS, norm.]
Anselmino et al. arXiv:1312.6261 [COMPASS, high z, norm.]
Echevarria, Idilbi, Kang, Vitev arXiv:1401.5078 (Q = 1.5 GeV)

Red/orange regions: 68\% CL from replica method Inclusion of DY/Z diminishes the correlation
Inclusion of Compass increases the $\left\langle P_{\perp}^{2}\right\rangle$ and reduces its spread e+e- would further reduce the correlation

Stability of our results

Test of our default choices

How does the χ^{2} of a single replica change if we modify them?

Original $\chi^{2} /$ dof $=1.51$
Normalization of HERMES data as done for COMPASS:
$X^{2} / \mathrm{dof}=1.27$
Parametrizations for collinear PDFs
(NLO GJR 2008 default choice):
NLO MSTW 2008 (1.84), NLO CJ12 (1.85)
More stringent cuts
(TMD factorization better under control) $\chi^{2} /$ dof $\rightarrow 1$
Ex: Q2 $>1.5 \mathrm{GeV}^{2} ; 0.25<\mathrm{z}<0.6 ; \mathrm{PhT}<0.2 \mathrm{Qz} \Rightarrow x^{2} / \mathrm{dof}=1.02$ (477 bins)

Analysis of New Compass Data

Different binning in \mathbf{Z} (larger)
Reduced number of data
$P_{\text {trit }}^{2}(\mathrm{GeV} / c)^{2} \quad$ Much higher statistics

0.003	0.008	0.013	0.020	0.032	0.055	0.1	0.21	0.4

Preliminary results

Include all data

- $\langle z\rangle=0.25$ (offset=6)
- \langle z $\rangle=0.35$ (offset=4)
- $\langle\mathrm{z}\rangle=0.5$ (offset=2)
- $\langle z\rangle=0.7$ (offset=0)

Use 200 replica parameters from previous fit

Normalized at 1st data point of bin

Include all data

Use 200 replica parameters from previous fit

Normalized at 1st data point of bin

Include all data

Use 200 replica parameters from previous fit

Normalized at 1st data point of bin

Include all data

- $\langle\mathrm{z}\rangle=0.25$ (offset=6)
- $\langle\mathrm{z}\rangle=0.35$ (offset=4)
- $\langle\mathrm{z}\rangle=0.5$ (offset=2)
- $\langle\mathrm{z}\rangle=0.7$ (offset=0)

Minimization of

 50 data replicas

Exploratory analysis without normalization

Use 200 replica parameters from previous fit

- $\langle z\rangle=0.25$ (offset=4)
- $\langle z\rangle=0.35$ (offset=3)
- $\langle\mathrm{z}\rangle=0.5$ (offset=2)
- $\langle\mathrm{z}\rangle=0.7$ (offset=1)

Exploratory analysis

 without normalizationUse 200 replica parameters from $\longrightarrow \quad \chi^{2} /$ dof >4 previous fit

Sensitive to z value

Less stable with regards to kinematical cuts

SIDIS h^{+}
FF DSS

Preliminary analysis of Z data at LHC

To be included in future fit

Preliminary analysis using current parameters

Next step: minimisation of replicated data

First global extraction of TMDs from SIDIS, DY and Z boson

Test of the universality and evolution formalism of partonic TMDs

Definition of a parametrization of TMDs able to describe more than 8000 data points

First global extraction of TMDs from SIDIS, DY and Z boson

Test of the universality and evolution formalism of partonic TMDs

Definition of a parametrization of TMDs able to describe more than 8000 data points

First global extraction of TMDs from SIDIS, DY and Z boson

Test of the universality and evolution formalism of partonic TMDs

Definition of a parametrization of TMDs able to describe more than 8000 data points

First global extraction of TMDs from SIDIS, DY and Z boson
Test of the universality and evolution formalism of partonic TMDs
Definition of a parametrization of TMDs from 8000 data points

New Data

-compatible with parameters obtained from previous analysis
-requires further considerations on normalisation

First global extraction of TMDs from SIDIS, DY and Z boson
Test of the universality and evolution formalism of partonic TMDs
Definition of a parametrization of TMDs from 8000 data points

BACKUP

The replica method

Example of original data

The replica method

Data are replicated (with Gaussian distribution)

The replica method

The fit is performed on the replicated data

The replica method

The procedure is repeated 200 times

The replica method

For each point, a central 68\% confidence interval is identified

	Framework	HERMES	COMPASS	DY	Z production	N of points
$\text { KN } 2006$ hep-ph/0506225	LO-NLL	x	x	\checkmark	\checkmark	98
Pavia 2013 (+Amsterdam, Bilbao) arXiv:1309.3507	No evo (QPM)	\checkmark	x	x	x	1538
$\begin{gathered} \text { Torino } 2014 \\ \text { (+JLab) } \\ \text { arxiv:1312.6261 } \\ \hline \end{gathered}$	No evo (QPM)	(separately)	(separately)	x	x	$\begin{gathered} 576 \text { (H) } \\ 6284 \text { (C) } \end{gathered}$
DEMS 2014 arXiv:1407.3311	NLO-NNLL	x	x	\checkmark	\checkmark	223
EIKV 2014 arXiv:1401.5078	LO-NLL	$1\left(x, Q^{2}\right)$ bin	$1\left(x, Q^{2}\right)$ bin	\checkmark	\checkmark	500 (?)
$\begin{gathered} \text { Pavia } 2017 \\ (+ \text { JLab }) \end{gathered}$	LO-NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059

H and brescriptions

$$
\begin{align*}
& \text { Choice Choice } \\
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)} \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\text {max }}^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv b_{\max }\left(1-e^{-\frac{b_{T}^{4}}{b_{\max }}}\right)^{1 / 4} \quad \begin{array}{l}
\text { Bacchetta, Echevarria, Mulders, Radici, Signori } \\
\text { arरiv: } 1508.00402
\end{array} \\
& \mu_{b}=Q_{0}+q_{T} \quad b_{*}=b_{T} \tag{DEMS 2014}
\end{align*}
$$

Pavia 2017 perturbative ingredients

$$
\begin{aligned}
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{\tilde{S}}\left(b_{;} ; \mu_{,}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)} \\
& \begin{array}{ccc}
A_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) & A_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right) & A_{3}\left(\mathcal{O}\left(\alpha_{S}^{3}\right)\right) \\
\boldsymbol{V} & & \\
& B_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) & B_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{array} \\
& C_{0}\left(\mathcal{O}\left(\alpha_{S}^{0}\right)\right) \\
& C_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) \\
& C_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{aligned}
$$

Model: non perturbative elements

input TMD FF ($\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}$)
$\hat{D}_{1 N P}^{a \rightarrow h}=$ F.T. of $\frac{1}{g_{3 a \rightarrow h}+\left(\lambda_{F} / z^{2}\right) g_{4 a \rightarrow h}^{2}}\left(e^{-\frac{P_{\perp}^{2}}{g_{3 a \rightarrow h}}}+\lambda_{F} \frac{\boldsymbol{P}_{\perp}^{2}}{z^{2}} e^{-\frac{P_{\perp}^{2}}{g_{4 a h h}}}\right)$
sum of two different gaussians
with different variance
with kinematic dependence on transverse momenta
width z-dependence
$g_{3,4}(z)=N_{3,4} \frac{\left(z^{\beta}+\delta\right)(1-z)^{\gamma}}{\left(\hat{z}^{\beta}+\delta\right)(1-\hat{z})^{\gamma}}$
where

$$
\begin{gathered}
N_{3,4} \equiv g_{3,4}(\hat{z}) \\
\hat{z}=0.5
\end{gathered}
$$

Average transverse momenta

$$
\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle(x)=\frac{g_{1}(x)+2 \lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)}
$$

$$
\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle(z)=\frac{g_{3}^{2}(z)+2 \lambda_{F} g_{4}^{3}(z)}{g_{3}(z)+\lambda_{F} g_{4}^{2}(z)}
$$

Include only SIDIS data
 Hermes + Compass

- $\langle z\rangle=0.25$ (offset=6)
- $\langle z\rangle=0.35$ (offset=4)
- $\langle z\rangle=0.5$ (offset=2)
- $\langle\mathrm{z}\rangle=0.7$ (offset=0)

Use 200 replica

 parameters from previous fit

Normalized at 1st data point of bin

Include only SIDIS
data

Use 200 replica parameters from previous fit

$$
\chi^{2} / \mathrm{dof}=2.07
$$

Normalized at
1st data point of bin

Include only SIDIS data
 Hermes + Compass

- $\langle z\rangle=0.25$ (offset=6)
- $\langle z\rangle=0.35$ (offset=4)
- $\langle z\rangle=0.5$ (offset=2)
- $\langle\mathrm{z}\rangle=0.7$ (offset=0)

Use 200 replica

 parameters from previous fit

Normalized at 1st data point of bin

Include only SIDIS
data

Use 200 replica parameters from previous fit

$$
\chi^{2} / \mathrm{dof}=2.07
$$

Normalized at
1st data point of bin

Include only COMPASS

 data- $\langle z\rangle=0.25$ (offset=6)
- $\langle\mathrm{z}\rangle=0.35$ (offset=4)
- $\langle\mathrm{z}\rangle=0.5$ (offset=2)
- $\langle\mathrm{z}\rangle=0.7$ (offset=0)

Use 200 replica

 parameters from previous fitInclude only COMPASS
data

Use 200 replica parameters from previous fit

Normalized at 1st data point of bin

