

DIS2018: Discussion for document preparation for the European Strategy Update for Particle Physics Kobe, April 17th 2018

Heavy Ion Theory (addressed in the above facilities)

Néstor Armesto Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela

nestor.armesto@usc.es

EXCELENCIA

Status of Heavy lons:

• HI programme: QCD at extreme conditions of T & ρ .

 $\mathbb{A}_{\mathbb{A}}$

0.8

0.6

0.2

• Current status: matter created at RHIC and the LHC, with energy densities > those expected in lattice QCD for deconfinement/ χ SBR,

I) Shows collective features in the soft sector that are well described by relativistic hydrodynamics if applied very early (\leq I fm/c) after the collision, suggesting \approx equilibration.

2) Is very opaque to energetic partons/particles traversing it: strong modification of the yield of hard probes like high-pT particles, jets, quarkonia.

Open questions:

 Why is the medium describable by hydrodynamics (so early) even in small systems (that show QGP-like features)?
 [emergence]

Observable or effect	PbPb	pPb (at high mult.)	pp (at high mult.)	Refs.
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	[37–42]
Intermed. $p_{\rm T}$ ("recombination")	yes	yes	yes	[41-47]
Particle ratios	GC level	GC level except Ω	GC level except Ω	[48–51]
Statistical model	$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{ m GC} pprox 1, 20-40\%$	$\gamma_s^{\rm C} < 1, 20-40\%^2$	[52]
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{\rm out}/R_{\rm side} \approx 1^{-3}$	$R_{\rm out}/R_{\rm side} \stackrel{<}{\sim} 1$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_{\sim}} 1$	[53–59]
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	v_2, v_3	[25-27]
(from two part. correlations)				[60–67]
Characteristic mass dependence	v_2, v_3^4	v_2, v_3	v_2	[67–73]
Directed flow (from spectators)	yes	no	no	[74]
Higher order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	"4 ≈ 6" ⁵	[28, 29, 67]
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		[75–83]
Weak η dependence	yes	yes	not measured	[83–90]
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[91]
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured	[92]
Event plane and v_n correlations	yes	not measured	not measured	[93-95]
Direct photons at low $p_{\rm T}$	yes	not measured	not measured 6	[96]
Jet quenching	yes	not observed 7	not measured 8	[97-105]
Heavy flavor anisotropy	yes	hint ⁹	not measured	[106–109]
Quarkonia	$J/\psi \uparrow, \Upsilon \downarrow$	suppressed	not measured 8	[110–116]

602.09138

Open questions:

FIG. 2. Elliptic (v_2) , triangular (v_3) and quadrupolar (v_4) flow coefficients from superSONIC simulations (bands) compared to experimental data from ATLAS, CMS and ALICE (symbols) for p+p (left panel), p+Pb (center panel) and Pb+Pb (right panel) collisions at $\sqrt{s} = 5.02$ TeV [58–62]. Simulation parameters used were $\frac{\eta}{s} = 0.08$ and $\frac{\zeta}{s} = 0.01$ for all systems. Note that ATLAS results for v_3, v_4 are only available for $\sqrt{s} = 13$ TeV, while all simulation results are for $\sqrt{s} = 5.02$ TeV.

Open questions:

FIG. 2. Elliptic (v_2) , triangular (v_3) and quadrupolar (v_4) flow coefficients from superSONIC simulations (bands) compared to experimental data from ATLAS, CMS and ALICE (symbols) for p+p (left panel), p+Pb (center panel) and Pb+Pb (right panel) collisions at $\sqrt{s} = 5.02$ TeV [58–62]. Simulation parameters used were $\frac{\eta}{s} = 0.08$ and $\frac{\zeta}{s} = 0.01$ for all systems. Note that ATLAS results for v_3, v_4 are only available for $\sqrt{s} = 13$ TeV, while all simulation results are for $\sqrt{s} = 5.02$ TeV.

- How does it get ≈isotropised? Weak or strong coupling dynamics?
- How to reduce the uncertainty in the extraction of QCD medium parameters?
 - → Initial conditions for collective behaviour (nuclear wave function, transverse hadron structure, factorisation if any to compute initial parton production,...).
 - ➔ Modification of perturbative processes in a medium versus medium response for hard probes.

B. Müller

• RHIC: RHIC-II, Beam Energy Scan: 10 times statistics, improved vertex and calorimetry, sPHENIX.

Year	Species	Goals
2019	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √s _{NN} = 11.5, 14.5, 19.6 GeV Fixed target: 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 GeV
2020	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √s _{NN} = 7.7, 9.1 GeV
2021	Au+Au p+p/Au	Completion of high statistics beam energy scan (?) Forward measurements in p+p and p+Au (?)
2022	No run	sPHENIX installation
2023	Au+Au	sPHENIX Commissioning Single jet, di-jet, photon-tagged jet, <i>b</i> -tagged jet spectra Di-jet asymmetry, Upsilon spectra
2024	p+p p+Au	Reference data for modification of jets, di-jets, <i>b</i> -tagged jets Jet A _{LL} Reference data for cold nuclear matter effects
2025	Au+Au	Direct photon measurement Study of flavor dependence of jet observables Modification of jet fragmentation functions, jet splitting functions, other complex jet observables

• RHIC: RHIC-II, Beam Energy Scan: 10 times statistics, improved vertex and calorimetry, sPHENIX.

J. Jowett in Chamonix 2017

J.M. Jowett, LHC Performance Workshop, Chamonix, 25/1/2017

Year	Species	Goals
2019	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √SNN = 11.5, 14.5, 19.6 GeV Fixed target: 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 GeV
2020	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √s _{NN} = 7.7, 9.1 GeV
2021	Au+Au p+p/Au	Completion of high statistics beam energy scan (?) Forward measurements in p+p and p+Au (?)
2022	No run	sPHENIX installation
2023	Au+Au	sPHENIX Commissioning Single jet, di-jet, photon-tagged jet, <i>b</i> -tagged jet spectra Di-jet asymmetry, Upsilon spectra
2024	p+p p+Au	Reference data for modification of jets, di-jets, <i>b</i> -tagged jets Jet A _{LL} Reference data for cold nuclear matter effects
2025	Au+Au	Direct photon measurement Study of flavor dependence of jet observables Modification of jet fragmentation functions, jet splitting functions, other

• LHC 2018 and Run 3 and 4 (HL-LHC for ions), 10 nb⁻¹ integrated luminosity in PbPb per experiment (ALICE, ATLAS, CMS), discussions about how many pp and pPb runs, smaller ions, fixed target program (LHCb, ALICE, AFTER).

B. Müller

• RHIC: RHIC-II, Beam Energy Scan: 10 times statistics, improved vertex and calorimetry, sPHENIX.

J. Jowett in Chamonix 2017

J.M. Jowett, LHC Performance Workshop, Chamonix, 25/1/2017

Year	Species	Goals
2019	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √sNN = 11.5, 14.5, 19.6 GeV Fixed target: 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 GeV
2020	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √s _{NN} = 7.7, 9.1 GeV
2021	Au+Au p+p/Au	Completion of high statistics beam energy scan (?) Forward measurements in p+p and p+Au (?)
2022	No run	sPHENIX installation
2023	Au+Au	sPHENIX Commissioning Single jet, di-jet, photon-tagged jet, <i>b</i> -tagged jet spectra Di-jet asymmetry, Upsilon spectra
2024	p+p p+Au	Reference data for modification of jets, di-jets, <i>b</i> -tagged jets Jet A _{LL} Reference data for cold nuclear matter effects
2025	Au+Au	Direct photon measurement Study of flavor dependence of jet observables Modification of jet fragmentation functions, jet splitting functions, other complex is to be available.

• LHC 2018 and Run 3 and 4 (HL-LHC for ions), 10 nb⁻¹ integrated luminosity in PbPb per experiment (ALICE, ATLAS, CMS), discussions about how many pp and pPb runs, smaller ions, fixed target program (LHCb, ALICE, AFTER).

• Studies of AA @ HE-LHC & FCC (1605.01389).

B. Müller

• RHIC: RHIC-II, Beam Energy Scan: 10 times statistics, improved vertex and calorimetry, sPHENIX.

Year	Species	Goals
2019	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: √s№ = 11.5, 14.5, 19.6 GeV Fixed target: 3.0, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 GeV
2020	Au+Au	High Statistics Beam Energy Scan: Search for QCD Critical Point Collider mode: $\sqrt{s_{NN}} = 7.7$, 9.1 GeV
2021	Au+Au p+p/Au	Completion of high statistics beam energy scan (?) Forward measurements in p+p and p+Au (?)
2022	No run	sPHENIX installation
2023	Au+Au	sPHENIX Commissioning Single jet, di-jet, photon-tagged jet, <i>b</i> -tagged jet spectra Di-jet asymmetry, Upsilon spectra
2024	p+p p+Au	Reference data for modification of jets, di-jets, b-tagged jets Jet A _{LL} Reference data for cold nuclear matter effects
2025	Au+Au	Direct photon measurement Study of flavor dependence of jet observables Modification of jet fragmentation functions, jet splitting functions, other

B. Müller

• LHC 2018 and Run 3 and 4 (HL-LHC for ions), 10 nb⁻¹ integrated luminosity in PbPb per experiment (ALICE, ATLAS, CMS), discussions about how many pp and pPb runs, smaller ions, fixed target program (LHCb, ALICE, AFTER).

• Studies of AA @ HE-LHC & FCC (1605.01389).

Present pPb / UPC data do not have a large impact (e.g. on nPDFs in EPPS I 6; uncertainties?), discussions undergoing (LHCb, ALICE FoCal): forward γ, jets and correlations / jets and exclusive VMs.
 N.Armesto, 17.04.2018 - Heavy Ion Theory.

Nucleus ≠ Zp+(A-Z)n.
Particle production at large scales similar to pp (dilute regime).

Nucleus ≠ Zp+(A-Z)n.
Particle production at large scales similar to pp (dilute regime).

- Lack of information about small-x partons, correlations and transverse structure.
- We do not understand the dense regime.

Nucleus ≠ Zp+(A-Z)n.
Particle production at large scales similar to pp (dilute regime).

- Lack of information about small-x partons, correlations and transverse structure.
- We do not understand the dense regime.

→ ep and eA: nuclear WF and mechanism of particle production.

• Nucleus \neq Zp+(A-Z)n. • Particle production at large scales similar to pp (dilute regime).

• Medium behaves very early like a low viscosity liquid: macroscopic description.

QGP \rightarrow

Reconfinement

- Lack of information about small-x partons, correlations and transverse structure.
- We do not understand the dense regime.

- How isotropised the system becomes? • Why is hydro effective
- so fast, which dynamics?

→ ep and eA: initial conditions; how small can a system become and still show 'collectivity'?

Nucleus ≠ Zp+(A-Z)n.
Particle production at large scales similar to pp (dilute regime). Medium behaves very early like a low viscosity liquid: macroscopic description.

• Medium is very opaque to colour.

<u>Gluons from saturated nuclei</u> \rightarrow Glasma?

→ QGP

Reconfinement

• Lack of information about small-x partons, correlations and transverse structure.

• We do not understand the dense regime.

→ ep and eA: nuclear WF and mechanism of particle production. • How isotropised the system becomes?

Why is hydro effective so fast, which dynamics?

→ ep and eA: initial conditions; how small can a system become and still show 'collectivity'? • What are the dynamical mechanisms for such opacity? Weak or strong coupling?

• How to extract accurately medium parameters?

→ ep and eA: in-medium QCD radiation, cold nuclear effects on hard probes.

• We need ep and eA:

→ To unravel linear/non-linear dynamics at small x (ep).
→ To establish genuine nuclear effects, p as reference.
→ To disentangle density (saturation?) from energy (linear resummation?) effects.

In A

• We need ep and eA:

→ To unravel linear/non-linear dynamics at small x (ep).
→ To establish genuine nuclear effects, p as reference.
→ To disentangle density (saturation?) from energy (linear resummation?) effects.

• We need energy:

→ To determine the partonic structure (nPDFs, transverse profiles) and the validity of factorisation for hh/AA.
→ To completely unfold nuclear structure as in the proton (Pb/Au PDFs, not ratios): NC+CC, heavy flavours,...
→ To have lever arm in Q² at low x.

→ To explore rarer hard probes (jets, W/ Z, tops @ HL/HE-LHC, H @ FCC).

• We need ep and eA:

→ To unravel linear/non-linear dynamics at small x (ep).
→ To establish genuine nuclear effects, p as reference.
→ To disentangle density (saturation?) from energy (linear resummation?) effects.

• We need energy:

→ To determine the partonic structure (nPDFs, transverse profiles) and the validity of factorisation for hh/AA.
→ To completely unfold nuclear structure as in the proton (Pb/Au PDFs, not ratios): NC+CC, heavy flavours,...

- → To have lever arm in Q^2 at low x.
- → To explore rarer hard probes (jets, W/ Z, tops @ HL/HE-LHC, H @ FCC).

• We need ep and eA:

→ To unravel linear/non-linear dynamics at small x (ep).
→ To establish genuine nuclear effects, p as reference.
→ To disentangle density (saturation?) from energy (linear resummation?) effects.

• We need energy:

→ To determine the partonic structure (nPDFs, transverse profiles) and the validity of factorisation for hh/AA.
→ To completely unfold nuclear structure as in the proton (Pb/Au PDFs, not ratios): NC+CC, heavy flavours,...

- → To have lever arm in Q^2 at low x.
- → To explore rarer hard probes (jets, W/ Z, tops @ HL/HE-LHC, H @ FCC).

• We need ep and eA:

→ To unravel linear/non-linear dynamics at small x (ep).
→ To establish genuine nuclear effects, p as reference.
→ To disentangle density (saturation?) from energy (linear resummation?) effects.

• We need energy:

→ To determine the partonic structure (nPDFs, transverse profiles) and the validity of factorisation for hh/AA.
→ To completely unfold nuclear structure as in the proton (Pb/Au PDFs, not ratios): NC+CC, heavy flavours,...

- → To have lever arm in Q^2 at low x.
- → To explore rarer hard probes (jets, W/ Z, tops @ HL/HE-LHC, H @ FCC).

Summary:

• Some open problems in high-energy heavy ion physics: transition from microscopic dynamics to macroscopic behaviour, collectivity in small systems, determination of medium parameters,...

Summary:

• Some open problems in high-energy heavy ion physics: transition from microscopic dynamics to macroscopic behaviour, collectivity in small systems, determination of medium parameters,...

• ep/eA will provide key information:

- → Initial conditions for collective behaviour.
- \rightarrow The small systems puzzle.

→ ...

→ nPDFs and other cold nuclear matter effects for hard probes.

Summary:

• Some open problems in high-energy heavy ion physics: transition from microscopic dynamics to macroscopic behaviour, collectivity in small systems, determination of medium parameters,...

• ep/eA will provide key information:

→ Initial conditions for collective behaviour.

 \rightarrow The small systems puzzle.

→ nPDFs and other cold nuclear matter effects for hard probes.

→ ...

• We need:

 \rightarrow ep and eA.

→ The largest possible lever arm in energy for present and future hh/AA colliders, and for exploring new regimes of QCD.
 → An EIC (several A's, overlap with FT, precision, versatility) and the LHeC/FCC-eh (large √s_{NN}, access to small x and large Q²).
 They are complementary, also to pA/UPC at hadron colliders.

