## WW production at NNLO+PS

## Emanuele Re*

CERN \& LAPTh Annecy


DIS 2018
Kobe, 17 April 2018
*ongoing work with M. Wiesemann and G. Zanderighi

## introduction and outline



- vector boson pair production
- access to anomalous gauge couplings.
- background for several searches, for instance $H \rightarrow W W$.
- as shown in previous talk, the current experimental precision already demands for predictions that go beyond NLO(+PS) accuracy.
- NNLO corrections are certainly needed, and resummation too, in corners of phase-space.
- this talk: matching NNLO and PS for $p p \rightarrow W^{+} W^{-}$, using MiNLO and MATRIX
(a) method: (improved) MiNLO
(b) NNLO input: Matrix
(c) results [ preliminary ]


## MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)


## MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$



## MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{q}^{2}\left(q_{T}, m_{V}\right)\left[B\left(1-2 \Delta_{q}^{(1)}\left(q_{T}, m_{V}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$



## MiNLO

## Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{q}^{2}\left(q_{T}, m_{V}\right)\left[B\left(1-2 \Delta_{q}^{(1)}\left(q_{T}, m_{V}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$



## MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{q}^{2}\left(q_{T}, m_{V}\right)\left[B\left(1-2 \Delta_{q}^{(1)}\left(q_{T}, m_{V}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$



## (1)중 Sudakov FF included on $V+j$

 Born kinematics- MinLO-improved VJ yields finite results also when 1 st jet is unresolved $\left(q_{T} \rightarrow 0\right)$
- $\bar{B}_{\text {MiNLO }}$ allows extending the validity of VJ-POWHEG [called "VJ-MiNLo" hereafter]
- formal accuracy of VJ -MiNLO for inclusive observables carefully investigated.
[Hamilton et al. 1212.4504]
- possible to improve $\mathrm{VJ}-\mathrm{MiNLO}$ such that inclusive NLO is recovered $\left(\mathrm{NLO}^{(0)}\right)$, without spoiling NLO accuracy of $V+j\left(\mathrm{NLO}^{(1)}\right)$ :

$$
\underline{\mathrm{MiNLO}^{\prime}} \text { : NLO+PS merging, without merging scale }
$$

- accurate control of subleading small- $p_{T}$ logarithms is needed:
- include $B_{2}$ (NNLL) coefficient in MiNLO-Sudakov.
- set scales in $R, V$ and subtraction terms equal to $q_{T}$ (boson transverse momentum).
- without the above requirements, spurious $\alpha_{\mathrm{S}}^{3 / 2}$ terms show up in $\sigma_{\mathrm{NLO}}^{(0)}$ upon integration over $q_{T}$.


## MiNLO'

- formal accuracy of $\mathrm{VJ}-\mathrm{MiNLO}$ for inclusive observables carefully investigated.
[Hamilton et al. 1212.4504]
- possible to improve VJ-MiNLO such that inclusive NLO is recovered ( $\mathrm{NLO}^{(0)}$ ), without spoiling NLO accuracy of $V+j\left(\mathrm{NLO}^{(1)}\right)$ :

$$
\underline{\mathrm{MiNLO}^{\prime}} \text { : NLO+PS merging, without merging scale }
$$

- accurate control of subleading small- $p_{T}$ logarithms is needed:
- include $B_{2}$ (NNLL) coefficient in MinLo-Sudakov.
- set scales in $R, V$ and subtraction terms equal to $q_{T}$ (boson transverse momentum).
- without the above requirements, spurious $\alpha_{\mathrm{S}}^{3 / 2}$ terms show up in $\sigma_{\mathrm{NLO}}^{(0)}$ upon integration over $q_{T}$.
- for color-singlet production x , the above procedure is general, and (almost) process independent.

|  | $X$ (inclusive) | $X+j$ (inclusive) | $X+2 j$ (inclusive) |
| :---: | :---: | :---: | :---: |
| $\checkmark$ X-XJ @ NLOPS | NLO | NLO | LO |
| X @ NNLOPS | NNLO | NLO | LO |

- a generalization of the MiNLO' approach for processes with jets at LO has also been proposed (but here we are not using it).
[Frederix,Hamilton '15]


## MinLo' : from Drell-Yan to $W W$

A MinLo' generator that merges WW and WW + 1 jet at NLO+PS was obtained a while ago:

- POWHEG WWJ generator obtained ex-novo using interfaces to Madgraph and Gosam 2.0
[Campbell et al. 1202.547; Luisoni et al. 1306.2542; Cullen et al. 1404.7096]
- starting from the Drell-Yan case, we extracted the $B_{2}^{(W W)}$ term from the virtual ( $V^{(W W)}$ ) and Born ( $B^{(W W)}$ ) contributions of $p p \rightarrow W W$.
- for Drell-Yan, $V^{(\mathrm{V})}$ and $B^{(\mathrm{V})}$ are proportional, hence $B_{2}^{(\mathrm{V})}$ is just a number.
- in $p p \rightarrow W W$, this is no longer true: $B_{2}^{(\mathrm{WW})}=B_{2}^{(\mathrm{WW})}\left(\Phi_{W W}\right)$ :
- for $q \bar{q}$-initiated color singlet production, $B_{2}$ has the form

$$
B_{2}=-2 \gamma^{(2)}+\beta_{0} C_{F} \zeta_{2}+2\left(2 C_{F}\right)^{2} \zeta_{3}+\beta_{0} H_{1}(\Phi)
$$

- $H_{1}(\Phi)$ (process-dependent part of $B_{2}$ ) extracted on an event-by-event basis: projection of $\Phi_{\mathrm{WWJ}}$ onto $\Phi_{\mathrm{WW}}$, used FKS ISR mapping (smooth collinear limit).
- for validation and results, see paper from '16.


## importance of NNLO for diboson production

...clear example where plots speak for themselves...


- NNLO results in these plots: MATRIX

[Grazzini,Kallweit, Wiesemann -'17]


## MATRIX

## The MATRIX framework

[Grazzini, Kallweit, MW 'I7]

## Amplitudes

## OpenLoops <br> (Collier, CutTOols, ...) <br> Dedicated 2-loop codes (VVamp, GiNAC, TDHPL, ...)

## Munich

MUlti-chaNnel Integrator at Swiss (CH) precision


## Matrix

- $q_{T}$-subtraction formalism, in a nutshell

$$
\mathrm{d} \sigma_{(\mathrm{N}) \mathrm{NLO}}^{\mathrm{F}}=\mathcal{H}_{(\mathrm{N}) \mathrm{NLO}}^{\mathrm{F}} \otimes \mathrm{~d} \sigma_{\mathrm{LO}}^{\mathrm{F}}+\left[\mathrm{d} \sigma_{(\mathrm{N}) \mathrm{LO}}^{\mathrm{F}+\mathrm{jet}}-\mathrm{d} \sigma_{(\mathrm{N}) \mathrm{NLO}}^{\mathrm{CT}}\right]
$$

- subtraction term known from resummation, and process independent (apart from LO dependence).
- hard-collinear function: can be extracted from 2-loops amplitudes.
- so far, extensively used for color-singlet production at NNLO.


## Matrix

- $q_{T}$-subtraction formalism, in a nutshell

$$
\mathrm{d} \sigma_{(\mathrm{N}) \mathrm{NLO}}^{\mathrm{F}}=\mathcal{H}_{(\mathrm{N}) \mathrm{NLO}}^{\mathrm{F}} \otimes \mathrm{~d} \sigma_{\mathrm{LO}}^{\mathrm{F}}+\left[\mathrm{d} \sigma_{(\mathrm{N}) \mathrm{LO}}^{\mathrm{F}+\mathrm{jet}}-\mathrm{d} \sigma_{(\mathrm{N}) \mathrm{NLO}}^{\mathrm{CT}}\right]
$$

- subtraction term known from resummation, and process independent (apart from LO dependence).
- hard-collinear function: can be extracted from 2-loops amplitudes.
- so far, extensively used for color-singlet production at NNLO.
- as shown next, for NNLOPS, one needs

$$
\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}} \leftarrow \text { fully differential in the Born phase space }
$$

- we used Matrix:

2-loops amplitudes from VVAMP [Gehrmann et al. '15] tree-level and 1-loop from OPENLOOPS [Cascioli et al. '11]
see also: [Grazzini, Kallweit,Pozzorini,Rathlev, Wiesemann '16]

- we have NOT included the $g g$ loop-induced channel
- it's about $30 \%$ of the NNLO correction.


## NNLO+PS for color-singlet production

- starting from a MinLO' generator, it's possible to match a PS simulation to NNLO.
- XJ-MinLo' (+POWHEG) generator gives X-XJ @ NLOPS:

|  | X (inclusive) | $X+j$ (inclusive) | $X+2 j$ (inclusive) |
| :---: | :---: | :---: | :---: |
| $\checkmark$ X-XJ @ NLOPS | NLO | NLO | LO |
| X @ NNLOPS | NNLO | NLO | LO |

## NNLO+PS for color-singlet production

- starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO.
- XJ-MinLo' (+POWHEG) generator gives X-XJ @ NLOPS:

|  | X (inclusive) | $X+j$ (inclusive) | $X+2 j$ (inclusive) |
| :---: | :---: | :---: | :---: |
| $\checkmark$ X-XJ @ NLOPS | NLO | NLO | LO |
| $X @$ NNLOPS | NNLO | NLO | LO |

- reweighting (differential on $\Phi_{B}$ ) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{XJ}-\mathrm{MiNLO}^{\prime}}}
$$

- by construction NNLO accuracy on inclusive observables;
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of XJ-MiNLO in 1-jet region;


## NNLO+PS for color-singlet production

- starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO.
- XJ-MinLo' (+POWHEG) generator gives X-XJ @ NLOPS:

|  | $X$ (inclusive) | $X+j$ (inclusive) | $X+2 j$ (inclusive) |
| :---: | :---: | :---: | :---: |
| $\checkmark$ X-XJ @ NLOPS | NLO | NLO | LO |
| $\checkmark X @$ NNLOPS | NNLO | NLO | LO |

- reweighting (differential on $\Phi_{B}$ ) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{XJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on inclusive observables;
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of XJ-MinLO in 1-jet region;


## NNLO+PS for color-singlet production

- starting from a MiNLO' generator, it's possible to match a PS simulation to NNLO.
- XJ-MinLo' (+POWHEG) generator gives X-XJ @ NLOPS:

|  | $X$ (inclusive) | $X+j$ (inclusive) | $X+2 j$ (inclusive) |
| :---: | :---: | :---: | :---: |
| $\checkmark$ X-XJ @ NLOPS | NLO | NLO | LO |
| $\checkmark X @$ NNLOPS | NNLO | NLO | LO |

- reweighting (differential on $\Phi_{B}$ ) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{XJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on inclusive observables;
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of XJ-MinLO in 1-jet region;
- notice: formally works because no spurious $\mathcal{O}\left(\alpha_{\mathrm{S}}^{1.5}\right)$ terms in X-XJ @ NLOPS (relative to $\sigma_{X}$ ).


## WW at NNLO+PS, in practice

- $p p \rightarrow e^{-} \bar{\nu}_{e} \mu^{+} \nu_{\mu}: \Phi_{B}$ is 9-dimensional
[ impossible ]
- choose variables, drop dependence upon ( $\ell, \nu_{\ell}$ ) invariant masses (fairly flat)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{B}}=\frac{\mathrm{d}^{9} \sigma}{\mathrm{~d} p_{T, W^{-}} \mathrm{d} y_{W_{W}} \mathrm{~d} \Delta y_{W^{+} W^{-}} \mathrm{d} \cos \theta_{W^{+}}^{\mathrm{CS}} \mathrm{~d} \phi_{W^{+}}^{\mathrm{CS}} \mathrm{~d} \cos \theta_{W^{-}}^{\mathrm{CS}} \mathrm{~d} \phi_{W^{-}}^{\mathrm{CS}}-\mathrm{d} m_{W}+\mathrm{d} m_{W^{-}}}
$$

- use "Collins-Soper" angles for both $W$ decays

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{B}}=\frac{9}{256 \pi^{2}} \sum_{i=0}^{8} \sum_{j=0}^{8} A B_{i j} f_{i}\left(\theta_{W^{-}}^{\mathrm{CS}}, \phi_{W^{-}}^{\mathrm{CS}}\right) f_{j}\left(\theta_{W^{+}}^{\mathrm{CS}}, \phi_{W^{+}}^{\mathrm{CS}}\right) \\
A B_{i j}=A B_{i j}\left(p_{T, W^{-}}, y_{W W}, \Delta y_{W^{+} W^{-}}\right)
\end{gathered}
$$

- final complexity: 81 triple-differential distributions at NNLO


## WW at NNLO+PS: validation

[ER,Wiesemann,Zanderighi, preliminary]


- $m_{W}$ distribution well reproduced also off from peak.


## WW at NNLO+PS: validation

[ER,Wiesemann,Zanderighi, preliminary]


- $m_{W}$ distribution well reproduced also off from peak.
- validated also other "Born" observables, as well as angular dependence (Collins-Soper angles) [not shown].


## WW at NNLO+PS: results

[ER,Wiesemann,Zanderighi, preliminary]


- expected patterns in inclusive and exclusive observables.
- the jet-vetoed cross-section is particularly important (e.g. for Higgs studies, but also to just measure $W W$ production).


## WW at NNLO+PS: results

[ER,Wiesemann,Zanderighi, preliminary]


- jet-veto cross section.
- fiducial cuts almost identical to ATLAS analysis [1702.04519]
- in ATLAS paper, jet-veto at $25 / 30 \mathrm{GeV}$.


## conclusion and outlook

- ongoing remarkable progress of NNLO computations: try to match them with parton showers.
- for color-singlet-production, POWHEG+MiNLO allows to do that.
[other methods are possible]
- shown for the first time (preliminary) results for $W W$ production at NNLO + PS $\left(p p \rightarrow e^{-} \bar{\nu}_{e} \mu^{+} \nu_{\mu}\right)$.
- Next steps:
- finish paper, release code;
- other diboson processes...;
- loop-induced gluonic channels;
- find more efficient method;


## conclusion and outlook

- ongoing remarkable progress of NNLO computations: try to match them with parton showers.
- for color-singlet-production, POWHEG+MiNLO allows to do that.
[other methods are possible]
- shown for the first time (preliminary) results for $W W$ production at NNLO+PS ( $p p \rightarrow e^{-} \bar{\nu}_{e} \mu^{+} \nu_{\mu}$ ).
- Next steps:
- finish paper, release code;
- other diboson processes...;
- loop-induced gluonic channels;
available at NLO+PS [Alioli et al. '16]
- find more efficient method;

Thanks for your attention!

## Extra slides

## WWJ-MiNLO' : technical details and choices

- All off-shell and single-resonant diagrams included. Full matrix-element with leptonic decays.

- worked in the 4F scheme: no interference with $W t$ and $t \bar{t}$.
- for same-family leptons, " $Z(\rightarrow \ell \bar{\ell}) Z\left(\rightarrow \nu_{\ell} \bar{\nu}_{\ell}\right)$ " not included:
- will be part of $Z Z$ generator ;
- interference between WW and ZZ shown to be extremely small ;
[Melia et al. 1107.5051]

- option to include/exclude fermionic loop corrections (at most 1-2\% difference in tails, x2 difference in speed).


## NNLOPS: technical details

- Variants for reweighting $W\left(\Phi_{B}\right)$ are also possible:

$$
\begin{gathered}
W\left(\Phi_{B}, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma_{A}^{\mathrm{NNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}+\left(1-h\left(p_{T}\right)\right) \\
d \sigma_{A}=d \sigma h\left(p_{T}\right), \quad d \sigma_{B}=d \sigma\left(1-h\left(p_{T}\right)\right), \quad h\left(p_{T}\right)=\frac{(\beta M)^{2}}{(\beta M)^{2}+p_{T}^{2}}
\end{gathered}
$$

- freedom to distribute "NNLO/NLO K-factor" only over medium-small $p_{T}$ region
- $h\left(p_{T}\right)$ controls where the NNLO/NLO K-factor is distributed (in the high- $p_{T}$ region, there is no improvement in including it)
- $\beta$ cannot be too small, otherwise resummation spoiled: for Higgs, chosen $\beta=1 / 2$; for DY, HW, WW, $\beta=1$
- in practice, we used

$$
W\left(\Phi_{B}, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma^{\operatorname{NNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)-\int d \sigma_{B}^{\mathrm{MiNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}+\left(1-h\left(p_{T}\right)\right)
$$

- one gets exactly $\left(d \sigma / d \Phi_{B}\right)_{\mathrm{NNLOPS}}=\left(d \sigma / d \Phi_{B}\right)_{\mathrm{NNLO}}$
- chosen $h\left(p_{T}^{j_{1}}\right)$

