Parton orbital angular momentum at small-x

Yoshitaka Hatta (Yukawa institute, Kyoto U)

YH, Yuya Nakagawa, Bo-Wen Xiao, Feng Yuan, Yong Zhao, PRD95 (2017) 114032 YH, Dong-Jing Yang, PLB781 (2018) 213

The proton spin problem

The proton has spin ½.

The proton is not an elementary particle.

Global analysis for ΔG

from H. Gao's talk on Monday

$$\int_{0.05}^{1} dx \Delta g(x, Q^2 = 10 \text{GeV}^2) = 0.20^{+.06} \text{ DSSV++}$$

$$\int_{0.05}^{0.2} \int dx \Delta g(x, Q^2 = 10 \text{GeV}^2) = 0.17 + 0.06 \text{ NNPDFpol1.1}$$

$$\int_{0.05}^{0.5} \int dx \Delta g(x, Q^2 = 1 \text{ GeV}^2) = 0.5 + 0.4 \text{ JAM15}$$

HUGE uncertainty from the small-x region

Maybe
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G$$
 , after all?

What's the role of OAM?

Achenauer, Sassot, Stratmann, 1509.06489

Wigner distribution and OAM

Wigner distribution \rightarrow Phase space distribution of quarks and gluons Naturally defines the orbital angular momentum.

$$L^{q,g} = \int dx \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$
Lorce, Pasquini, (2011);
YH (2011)

`PDF' for OAM

$$L^{q,g}(\boldsymbol{x}) = \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(\boldsymbol{x}, \vec{b}_{\perp}, \vec{k}_{\perp})$$

How does $L^{q,g}(x)$ behave as $x \to 0$?

I give two arguments that $L_g(x) \approx -\Delta G(x)$ at small-x.

Twist structure of OAM distributions

YH, Yoshida (2012)

Wandzura-Wilczek part

$$L_{can}^{q}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'} (H_{q}(x') + E_{q}(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} \tilde{H}_{q}(x')$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \Phi_{F}(x_{1}, x_{2}) \mathcal{P} \frac{3x_{1} - x_{2}}{x_{1}^{2}(x_{1} - x_{2})^{2}}$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{\Phi}_{F}(x_{1}, x_{2}) \mathcal{P} \frac{1}{x_{1}^{2}(x_{1} - x_{2})}.$$

Genuine twist-three part

$$\begin{split} L_{can}^{g}(x) &= \frac{x}{2} \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} (H_{g}(x') + E_{g}(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} \Delta G(x') \\ &+ 2x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{3}} \int dX \Phi_{F}(X, x') + 2x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{M}_{F}(x_{1}, x_{2}) \mathcal{P} \frac{1}{x_{1}^{3}(x_{1} - x_{2})} \\ &+ 2x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} M_{F}(x_{1}, x_{2}) \mathcal{P} \frac{2x_{1} - x_{2}}{x_{1}^{3}(x_{1} - x_{2})^{2}} \end{split}$$

OAM at small-x

Gluon Wigner distribution

 $xW(x, \vec{k}_{\perp}, \vec{b}_{\perp}) = \int_{\Delta_{\perp}} e^{i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \int_{z^{-}, z_{\perp}} e^{ixP^{+}z^{-} - i\vec{k}_{\perp} \cdot \vec{z}_{\perp}} \langle P - \Delta/2 | \text{Tr}F^{+i}(-z/2)U^{[+]}F^{+}_{i}(z/2)U^{[-]}|P + \Delta/2 \rangle$

Approximate $e^{ixP^+z^-} \approx 1$

$$xW(x,\vec{k}_{\perp},\vec{b}_{\perp}) \approx \frac{2N_c}{\alpha_s} \int \frac{d^2\vec{r}_{\perp}}{(2\pi)^2} e^{i\vec{k}_{\perp}\cdot\vec{r}_{\perp}} \left(\frac{1}{4}\vec{\nabla}_b^2 - \vec{\nabla}_r^2\right) S(\vec{r}_{\perp},\vec{b}_{\perp})$$

YH, Xiao, Yuan (2016)

$$S(\vec{r}_{\perp}, \vec{b}_{\perp}) = \left\langle \frac{1}{N_c} \operatorname{Tr} U\left(\vec{b}_{\perp} - \frac{\vec{r}_{\perp}}{2}\right) U^{\dagger}\left(\vec{b}_{\perp} + \frac{\vec{r}_{\perp}}{2}\right) \right\rangle_x \quad ``\mathsf{Dipole S-matrix''}$$

Where is spin dependence?

$$\begin{split} S(x,\Delta_{\perp},q_{\perp}) &\equiv \int d^2 x_{\perp} d^2 y_{\perp} e^{iq_{\perp} \cdot (x_{\perp} - y_{\perp}) + i(x_{\perp} + y_{\perp}) \cdot \frac{\Delta_{\perp}}{2}} \left\langle P + \frac{\Delta}{2} \left| \frac{1}{N_c} \text{Tr} \left[U(x_{\perp}) U^{\dagger}(y_{\perp}) \right] \right| P - \frac{\Delta}{2} \right\rangle \\ &= P(x,\Delta_{\perp},q_{\perp}) + iq_{\perp} \cdot \Delta_{\perp} O(x,|q_{\perp}|) + q_{\perp} \times S_{\perp} O_s(x,q_{\perp}) \\ & \text{``Pomeron''} \qquad \text{``odderon''} \qquad \text{``spin-dependent odderon''} \\ & \text{Jian Zhou (2013)} \end{split}$$

 $S(x,\Delta_{\perp},q_{\perp})$ cannot depend on the longitudinal spin ...forbidden by PT symmetry

Lesson: All information about spin is lost in the eikonal approximation.

$$e^{ixP^+z^-} \approx 1$$

OAM as a next-to-eikonal effect

YH, Nakagawa, Xiao, Yuan, Zhao (2017)

Go to next-to-eikonal

Can have spin-dependent matrix element. Involves half-infinite Wilson lines

Unintegrated polarized gluon distribution

$$ix\Delta G(x,\boldsymbol{q}_{\perp})\frac{S^{+}}{P^{+}} \equiv 2\int \frac{d^{2}z_{\perp}dz^{-}}{(2\pi)^{3}P^{+}}e^{-ixP^{+}z^{-}+iq_{\perp}\cdot z_{\perp}}\left\langle PS\left|\epsilon_{ij}F^{+i}\left(\frac{z}{2}\right)U_{-}F^{+j}\left(-\frac{z}{2}\right)U_{+}\right|PS\right\rangle$$

$$\approx \frac{4P^{+}}{g^{2}(2\pi)^{3}} \int d^{2}x_{\perp} d^{2}y_{\perp} e^{i(q_{\perp} + \frac{\Delta_{\perp}}{2}) \cdot x_{\perp} + i(-q_{\perp} + \frac{\Delta_{\perp}}{2}) \cdot y_{\perp}}$$

$$\times \epsilon_{ij} \left\{ q_{\perp}^{j} \int_{-\infty}^{\infty} dz^{-} \left\langle \operatorname{Tr} \left[U_{\infty z^{-}}(x_{\perp}) \overleftarrow{D}_{i} U_{z^{-} - \infty}(x_{\perp}) U^{\dagger}(y_{\perp}) \right] \right\rangle$$

$$+ q_{\perp}^{i} \int_{-\infty}^{\infty} dz^{-} \left\langle \operatorname{Tr} \left[U(x_{\perp}) U_{-\infty z^{-}}(y_{\perp}) D_{j} U_{z^{-} \infty}(y_{\perp}) \right] \right\rangle$$

Exactly the same matrix element appears.

 \rightarrow Linear relation between $\Delta G(x)$ and $L_g(x)$

$$L_g(x) \approx -\Delta G(x) + \cdots$$

YH, Nakagawa, Xiao, Yuan, Zhao (2017)

`DGLAP' equation for OAM

cf. Hagler, Schafer (1998)

,

$$\frac{d}{d\ln Q^2} \begin{pmatrix} L_q(x) \\ L_g(x) \end{pmatrix} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \begin{pmatrix} \hat{P}_{qq}(z) & \hat{P}_{qg}(z) & \Delta \hat{P}_{qq}(z) & \Delta \hat{P}_{qg}(z) \\ \hat{P}_{gq}(z) & \hat{P}_{gg}(z) & \Delta \hat{P}_{gq}(z) & \Delta \hat{P}_{gg}(z) \end{pmatrix} \begin{pmatrix} L_q(x/z) \\ L_g(x/z) \\ \Delta q(x/z) \\ \Delta G(x/z) \end{pmatrix}$$

$$\begin{split} \hat{P}_{qq}(z) &= C_F \left(\frac{z(1+z^2)}{(1-z)_+} + \frac{3}{2} \delta(1-z) \right) \,, \\ \hat{P}_{qg}(z) &= n_f z (z^2 + (1-z)^2) \,, \\ \hat{P}_{gq}(z) &= C_F (1 + (1-z)^2) \,, \\ \hat{P}_{gg}(z) &= 6 \frac{(z^2 - z + 1)^2}{(1-z)_+} + \frac{\beta_0}{2} \delta(z-1) \,, \\ \Delta \hat{P}_{qq}(z) &= C_F (z^2 - 1) \,, \\ \Delta \hat{P}_{qg}(z) &= n_f (1 - 3z + 4z^2 - 2z^3) \,, \\ \Delta \hat{P}_{gq}(z) &= C_F (-z^2 + 3z - 2) \,, \\ \Delta \hat{P}_{gg}(z) &= 6(z-1)(z^2 - z + 2) \,, \end{split}$$

Numerical results

YH, Yang (2018)

'Helicity dominance model'

$$\Delta\Sigma(x,Q_0^2) = A_q x^{-0.3} (1-x)^3, \quad \Delta G(x,Q_0^2) = A_g x^{a_g} (1-x)^3, \ L_q(x,Q_0^2) = L_g(x,Q_0^2) = 0,$$

Analytical insights

Use the ansatz

$$L_g(x,Q^2) = A(Q^2) \frac{1}{x^c} \qquad \Delta G(x)$$

$$\Delta G(x,Q^2) \approx B(Q^2) \frac{1}{x^c}$$

$$\frac{L_g(x,Q^2)}{\Delta G(x,Q^2)} \approx -\frac{2}{c+1}$$

$$\frac{\Delta \Sigma(x)}{\Delta G(x)} \approx -n_f \frac{1-c}{c(1+c) \left[6 \left(-H_{c-1} + \frac{1}{c} - \frac{1}{1+c}\right) \frac{\beta_0}{2}\right]}$$
$$L_q(x) \approx -\frac{\Delta \Sigma(x)}{1+c}$$

At small-x, helicity and OAM distributions are related to each other by the Regge parameter ${\cal C}$.

Conclusion

- OAM is the holy grail of spin physics. A lot of recent progress, still there's a long way to go.
- x-distribution for OAM can be defined. Significant cancelation between OAM and helicity at small-x.
- Beyond `DGLAP': Resum double logarithms $\left(\alpha_s \ln^2 \frac{1}{x}\right)^n$ → talk by Matt Sievert on Thursday
- Experimental observable for L_{q,g}(x)?
 → talk by Shohini Bhattacharya on Thursday