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OMA School on Monte Carlo Simulations

Ionization and Transport
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Outline

- Ionization: energy loss of charged projectiles in collisions 
with electrons of medium.

- Deflections of charged projectiles with screened 
Coulomb potential of nuclei (Multiple Coulomb scattering).

- Transport: general picture + thresholds.

- Biasing: a few notions + examples.

- Anticipated scoring example: Compton anti-coinc shield

Disclaimer: no claim of completeness, we provide only a few general ideas.
More detail: FLUKA manual + beginner course.
Even more detail: FLUKA advanced course.

We will give a general overview of a few topics:
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Brief reminder
From yesterday’s lecture on PENELOPE, electron/positron interactions:

Additionally, in FLUKA: electronuclear reactions (next rel), high-ene corr. to Bremsstrahlung. 
Not for this school, but keep in mind the tool is at your disposal.

In this lecture: FLUKA’s approach to the first row, not only for e-/e+, but for any charged projectile (!)

Whereas PENELOPE is restricted to e-, e+, photons, FLUKA has to be more general.

PENELOPE is committed to energies up to   1 GeV
FLUKA         up to 10 PeV
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In an ideal world…
Main idea of MC: simulate ensemble of particle trajectories + statistical analysis 
of desired observables.

Differential cross section (dxs) for each type of event → T, angle.

E.g. only elastic (potential) scattering and ionization losses.

Ideally one would simulate particle trajectory event by event (detailed simulation).

Take step, decide interaction type, sample from dxs, update ene/dir. Loop.
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But that is often an overkill!
How many interactions should be sampled per primary?
Rough estimate of number of collisions: Range/IMFP.

For 1-MeV electron: ~10000 events (!).

Deflections and energy losses are too frequent to simulate individually.

Electrons in Al 
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Sensible approach
Condensed schemes are a practical necessity to keep simulation time short.

Main idea:
- Sample individual interactions only when effect is large
- Account for global effect of small losses/deflections in an effective way     

         (to be discussed here) at each particle step.

In this talk: FLUKA’s approach to this condensed scheme for ionization and elastic
(potential) scattering.
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1/4 - Ionization energy losses

Energy losses of charged projectiles in collisions with 
the electrons of the medium
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Ionization energy losses in FLUKA

0 T
δ

Energy loss T

T>T
δ
: sampled explicitly from corresponding dxs, knock-on electron (δ ray) added to 
   stack of particles to simulate.

T<T
δ 
: no explicit energy loss sampling / secondary electron tracking. 

   Aggregate effect of many small losses described continuously during particle step.

T
δ 
 : threshold above which it is meaningful to do detailed sampling of knock-on electrons.

δ-ray production threshold.

2 different treatments: small vs large energy losses.

T
max
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T>Tδ: Discrete losses

● Large loss T transferred to a target electron.

● Invested in releasing and setting in motion this knock-on electron (δ ray).

● δ rays are typically energetic and can transport energy away from their 
point of origin, so it makes sense to sample their production and transport
explicitly (discrete losses).

● … how is T sampled?

T
δ

T
max

0

Energy loss T
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T>Tδ: detailed sampling
Depending on projectile, energy loss sampled from:
• Møller scattering  (e-)

• Bhabha scattering (e+)

• δ ray production by spin 0 or ½ proj (charged hadrons, muons).
• Mott for heavy ions.

T is sampled from these differential xs according to projectile type.

All moments reproduced: avg energy loss, fluctuations, etc
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δ-ray production threshold

• Probability of explicit δ-ray production depends on Tδ 

(δ-ray production threshold).

• FLUKA sets default values, which can be overridden 
(rule of thumb below):

● Electrons,positrons: EMFCUT card with PROD-CUT sdum;
● Charged hadrons/muons: set by DELTARAY card:

where:
δThresh production threshold, (from materials Mat1 to Mat2)
Ntab, Wtab control the accuracy of dp/dx tabulations (advanced user)
PRINT if set (not default), dp/dx  tabulations are printed on stdout

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
DELTARAY     δThresh      Ntab      Wtab      Mat1      Mat2      Step PRINT

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
EMFCUT     ElePosiTh   WHAT(2)   WHAT(3)      Mat1      Mat2      StepPROD-CUT

T
δ

T
max

Energy loss T

0
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Continuous losses (T<Tδ)

● Cross sections go like T-2 → Small losses are frequent 
                → (too much CPU effort to sample them             
                    individually).

● Idea: how to account for the aggregate effect of these small losses below 
the production threshold as a continuous energy loss at each particle 
step?

● For a given step, the continuous energy loss can be calculated by
● determining the mean energy loss below the production threshold according to 

restricted stopping powers (we now briefly show how)
● and by applying energy loss fluctuations on top to account for the stochastic 

nature of energy loss (we now briefly show how)

● The energy deposition due to the continuous energy loss of charged 
particles is local (i.e. energy not carried away by secondary particles)

T
δ

T
max

0

Energy loss T
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Charged particle dE/dx: Bethe-Bloch
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Spin 0 
(spin 1/2 is similar): ~ln beta4gamma4 

 relativistic rise

  ne : electron density of target material (~ Z/A);
  I : target mean excitation energy, material-dependent;
  Tmax: maximum energy transfer to an electron (from kinematics)

(Bethe formula derived within 1st Born approx: 1st-order perturbation theory 
and plane waves, assuming v>>ve)

To improve shortcomings, a series of corrections are used:

  δ : density correction;
  C : is the shell correction, important at low energies
  L1 : Barkas correction (z3).
  L2 : Bloch (z4) correction.
  G : Mott corrections.
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High energies: δ is the so called density correction, extensively 
discussed in the literature and connected with medium polarization

Low energies: C is the shell correction, which takes into account the 
effect of atomic bounds when the projectile velocity is no longer much larger 
than that of atomic electrons and hence the approximations under which the 
Bethe-Bloch formula has been derived break down. This correction becomes 
important at low energies.

Higher order: L1 is the Barkas (z3) correction responsible for the difference 
stopping power for particles-antiparticles, L2 is the Bloch (z4) correction 
(both no longer discussed in the following)

Low energies: effective charge. Partial neutralization of projectile charge 
due to electron capture, particularly effective at low energies.

Corrections to dE/dx:

Bethe formula gives stopping power (average energy loss per unit step length).

But what does the distribution of energy losses as a function of the step length
look like?
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General culture: Landau distribution
Lev Landau (1944), assuming:

 No Bremsstrahlung, only ionization events.
 Short path lengths  ↔  Δ << E, where Δ = total energy loss.
 Hard events via Thomson cross section:

 Distant collisions (small losses): Bethe stopping formula, no fluctuations.
 Tδ → infinity   (Laplace transform involved)

With all these approximations, he derived the distribution of energy losses 
after the projectile has traveled path length s 

15
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FLUKA’s alternative approach

- Differences among projectiles are not resolved (Thomson W-2 for all projectiles)

- For distant collisions, no fluctuations.

- Delta-ray cutoff at infinity: cannot be used for too long steps or too low ene!

FLUKA’s fresh approach:

- Energy-loss in collisions with e- described by dσ/dT (known for given projectile type)

- In a step:  N small energy losses,  N~Poisson.

- Aggregate energy loss in a step is sum of T~dσ/dT where number of terms ~ Poisson.

- Mathematical machinery: sampling aggregate energy loss from
cumulants of  dσ/dT

Landau distribution is somewhat impractical for FLUKA purposes:
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Advantages of FLUKA approach

17

• As opposed to Landau distribution, no assumption on dσ/dT 

for ionization!

• Based on general statistical properties of the cumulants of a 

distribution (dσ/dT)

• Cumulants and all necessary integrals can be calculated 

analytically and exactly a priori  (min. CPU time);

• Applicable to any kind of charged particle, taking into account 

the proper spin dependent cross section for δ ray production;

• The first 6-moments of the energy loss distribution are  

reproduced.
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Recap: continuous energy losses
Below the δ-ray threshold, energy losses are treated as 
“continuous”, with some special features:
• Fluctuations of energy loss are simulated with a FLUKA- 

specific algorithm

• The energy dependence of cross sections and dE/dx 
along the step is taken into account exactly.

• User has control on dE/dx. The latest recommended 
values of ionization potential and density effect 
parameters are implemented for each element 
(Sternheimer, Berger & Seltzer), but can be overridden 
by the user (e.g. compounds) via:

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
STERNHEI           C        X0        X1         a         m        δ0 MAT
*
MAT-PROP        Gasp     Rhosc      Iion      Mat1      Mat2      Step
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A few examples
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Energy loss distributions

20

Experimental 1 and calculated energy loss distributions for 2 
GeV/c positrons (left) and protons (right) traversing 100μm of 
Si        
[1] J.Bak et al. NPB288, 681 (1987)
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Same scheme for all charged projectiles

As discussed above, ionization energy loss scheme in 
FLUKA is set up in such a way that it is valid for all 
projectiles: 

 Electrons/positrons
 Charged hadrons
 Muons
 Heavy Ions

All share the same approach!

… but some extra features are needed for Heavy Ions

21

δ
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Heavy ions

Description of energy losses is more involved.

In addition to “normal” first Born approximation 
(Bethe-Bloch formula)

 Effective charge (up-to-date parameterizations)

 Charge exchange effects (dominant at low 
energies, ad-hoc model developed for FLUKA)

 Mott cross section.

 Nuclear form factors (of projectile ion!).

 Direct e+/e- production.
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Heavy ions

23

Depth-dose distribution of 238U beam in steel (exp data GSI).

Exaggerated case (wouldn’t be as dramatic for 12C)

Without discussing the corrections, we show their effect and how things can
go wrong if care is not taken:
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Bragg peak: 20Ne @ 670 MeV/n

24

Dose vs depth distribution 
for 670 MeV/n 20Ne ions on 
a water phantom. 

Solid line is the FLUKA 
prediction. The symbols 
are exp data from LBL and 
GSI.

Tail due to fragmentation 
products (talk tomorrow).

Fragmentation products

Exp. Data Jpn.J.Med.Phys. 18, 1,1998

A few examples of energy deposition by heavy ions in FLUKA
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Dose vs depth distribution 
for 270  and 330 MeV/n 12C 
ions on a water phantom.

The full green and dashed 
blue lines are the FLUKA 
predictions.

The symbols are exp data 
from GSI.

Exp. Data Jpn.J.Med.Phys. 18, 
1,1998

Idem for 12C
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Nuclear stopping power

 Besides collisions with target electrons, charged projectiles 
undergo Coulomb scattering with atomic nuclei

 The resulting energy losses, called nuclear stopping power, 
are smaller than the atomic ones, but are important for

 Heavy particles (i.e. ions) 

 Damage to materials:
Non-Ionizing Energy Loss (NIEL)
Displacements per Atom (DPA)

Scoring built-in.

26
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1/4 - Summary

 We have discussed two separate treatments for 
ionization energy losses in FLUKA: discrete vs continuous.

 Discrete losses (above delta production threshold) 
sampled individually.

 Continuous losses described effectively along particle 
step. First 6 moments of energy-loss distribution 
reproduced thanks to FLUKA’s fresh approach via 
cumulants of dσ/dT.

 Approach is set up in such a way that it works for all 
charged projectiles considered in FLUKA.

 Extra effort for ions leads to good agreement with exp.
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2/4 - Transport thresholds
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Transport threshold

Transport threshold: Kinetic energy below which a particle track is no longer
sampled.

What happens with the particle’s energy?

Particle (and its energy) is deposited on the spot (for electrons) or ranged out
(for heavier projectiles).

For practical reasons, in a MC simulation we do not follow particles until 
they stop.

In practice, we follow particles until their energy drops to/below a preset
transport threshold
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Particle transport threshold

 Hadron and muon transport thresholds 
are set with PART-THR 

 The neutron threshold (rounded to 
closest group boundary), 
recommended to leave at the default 
value (1 x 10-5 eV)

 For photons, electrons, and positrons: 
EMFCUT (see the manual for details).

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
PART-THR      Thresh     Part1     Part2      Step
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Threshold tuning example
3 thin layers: water, lead, aluminum (50 um each)

10 MeV electron beam from the left

Thresholds: 10 keV, 100 keV, 1 MeV
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Threshold tuning: exercise care!

The 10 keV threshold is most accurate.
The 100 keV threshold is a good compromise if you just want an average value.
The 1 MeV threshold is too coarse an approximation.

General guideline: inspiration from CSDA range
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CSDA range
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CSDA range - Electrons in water
Water density: 1 g/cm3   → We may directly read Range in cm

1-MeV electron can travel O(1 mm) = 1000 um
Depositing them on the spot in a ~50 um geometry is asking too much...

10 keV electron travels O(2 10^(-4)) cm = 2 um  → depositing them is fine

However: if you’re working with larger geometries or coarser scoring grids, can be OK!
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Another example : TEPC 
(T.T. Boehlen et al, Phys. Med. Biol. 56 (2011) 6545)

35

Tissue-equivalent proportional counter (TEPC)

Spherical volume of ~12.7 mm diameter.
 
Filled with low pressure gas ~ tissue equivalent
(ICRU 83)

Anode through center of sphere (surrounded by
helical grid) collects charge deposited by passing 
ion beam as a function of impact parameter.

Idea: measure energy (and derived quantities) imparted by ions (and delta rays).

Interesting for dosimetry….

… and also a perfect opportunity for testing FLUKA ionization scheme (!)
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Another example : TEPC 
(T.T. Boehlen et al, Phys. Med. Biol. 56 (2011) 6545)

 Measurements with a spherical TEPC 
 sensitive volume filled with a tissue-equivalent gas
 Deposited dose was measured as a function of impact 

parameter.

 Measurements simulated with FLUKA
 Low transport thresholds in inner volume (1 keV and, for testing 

only, 150 eV)

36
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Validation with TEPC measurements

37
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3/4: Multiple Coulomb scattering

Description of elastic (potential) scattering with screened atomic nuclei
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The problem

Besides ionization energy losses, charged particles undergo 
Coulomb scattering by (screened) atomic nuclei.  

These collisions are also frequent.

It is often impractical to sample them all individually.

One needs effective scheme to sample global effect of 
Coulomb collisions along a step.

Formally: what is the distribution of angles after a given 
step length? What does the spatial distribution look like?

Approach: specify dxs in individual collision and solve 
transport equation (with reasonable approx) to obtain 
distribution of angles after a traveled path length.
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Single scattering cross section

At the heart: assume that in a single Coulomb collision the dxs is:

i.e., Rutherford dxs with screening parameter accounting for:
- projectile and target atomic number.
- fraction of atomic electrons contributing to screening.

For ele/posi: additional spin-relativistic terms.
For all projectiles: possibility of accounting for nuclear form factors.

(Both imply multiplicative factors above).

Advantage: can be integrated analytically for any projectile/material.
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Multiple scattering distribution

Angular distribution after a given step length?

Molière obtained it from transport equation with approximations: 

- Small-angle approximation to the single-scattering cross section.
- Number of collisions is large enough (above say 10 or 20).
- ...which leads to a minimum applicable step length (!!!!)

Advantage: expressions are simple and depend only parametrically on 
projectile charge and material properties (!).

Just to see what it looks like, distribution of angles after path length t:

Main idea: every time that the projectile takes a step t, we sample the aggregate
deflection from F

Mol
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Care gone into MCS scheme
MCS presented before allows one to sample the accumulated deflection 
as a function of step length.

BUT THIS IS NOT THE FULL STORY.

Additional machinery is required to account for spatial distribution.

Actual step is not along straight line: trajectories are “corrugated”

→ Path length correction (shortening which accounts for wiggliness)

→ Corrections in place to account for lateral displacement

→ Truncation of the step at boundaries
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The FLUKA MCS
 Care is taken to maintain relationships among various

quantities (correlations):

scattering angle  ↔ longitudinal displacement
   longitudinal displacement ↔ lateral displacement      
Path length correction    ↔  lateral deflection

 Optionally, spin-relativistic corrections (1st or 2nd Born 
approximation for ele/posi), MULSOPT.

 Optionally effect of nucleus finite size (form factors) can be 
included (MULSOPT).

 Careful geometry tracking near boundaries.

 MCS is able to coexist with transport in magnetic fields
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Switching to single scattering
 Molière theory breaks down for too short path lengths: in 

very thin layers, wires, or gases, it does not apply.

 In FLUKA, it is possible to switch from multiple scattering 
algorithm to single scattering in defined materials 
(control number of single-scattering steps via MULSOPT).

 Cross section as given by Molière (for consistency)

 Integrated analytically without approximations

 Nuclear and spin-relativistic corrections are applied a 
posteriori.
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Combined result of model effort

 As a result, FLUKA can correctly simulate electron 
backscattering even at very low energies and in most 
cases without switching off the condensed history 
transport (a real challenge for an algorithm based on 
Moliere theory!)

 The sophisticated treatment of boundaries allows also to 
deal successfully with gases, very thin regions and 
interfaces;

 The same algorithm is used for charged hadrons and 
muons (!).
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Example: electron backscattering
From light to heavy materials.
From relatively low to relatively high energy.

NB: last column. Single-scattering at higher energies would lead to much longer times!
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Molière: example

1.75-MeV electrons 
on 0.364g/cm2 layer 

of Cu foil

Transmitted 
(forward) and 
backscattered 

(backward) electron 
angular distributions 

 Dots: measured 
Curves: FLUKA 

A bit more interesting in angle-resolved terms:
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User control of MCS
 There are situations where MCS based on Molière theory (despite all 

efforts) is not applicable: transport in residual gas, interactions in 
thin geometries like wire scanners or thin slabs, electron spectroscopies 
at low energies, microdosimetry, etc.

 FLUKA allows user to control various MCS parameters, as well as to 
switch to detailed single scattering if needed (CPU demanding, but 
affordable and accurate e.g. at low electron energies, can be tuned x 
material!). 

 Relevant FLUKA card (to be used on a per-material basis): 

 Details in FLUKA manual, but essentially:

– Switch to single scattering mode.

– Spin-relativistic corrections and nucl size effects.

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
MULSOPT        Flag1     Flag2     Flag3      Mat1      Mat2      StepSDUM
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Maximum step size

Comparison of calculated and 
experimental depth-dose 
profiles, for 0.5 MeV e-  on Al,
with three different step sizes. 
(2%, 8%, 20%)
Symbols: experimental data. 
r0 is the csda range

Step size is fixed by the 
corresponding percentage 
energy loss of the particle

Thanks to FLUKA mcs and 
boundary treatment, results 
are stable vs. (reasonable) 
step size.
First step is where step size 
matters most.
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Step size settings for special cases
For typical applications the default 20% fractional energy loss 
is fine.

For special problems (i.e. thin slabs, microdosimetry, etc) 
5-10% is preferred. Stability of results wrt step size should be 
checked.

If really needed, for EM:

For Had/μ

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
EMFFIX          Mat1  DEstep1      Mat2   DEstep2      Mat3   DEstep3

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
FLUKAFIX      DEstep                         Mat1      Mat2      Step



3/4: Summary

 We have given a general overview of FLUKA’s approach 
to multiple Coulomb scattering.

 Based on the Moliere theory, with additional effort to 
maintain various correlations and careful treatment near 
boundaries.

 Possibility to switch to single-scattering mode for delicate 
situations.

 Even for electron backscattering the model performs 
well!
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Cheat Sheet

52

DELTARAY – Modify δ-ray production parameters (hadrons, muons) 
PART-THR - Set particle transport threshold (hadrons, muons)
EMFCUT   – Set δ-ray production and transport threshold (e-,e+)

STERNHEI - Ionization potential and density effect
MAT-PROP   parameters customization

EMFFIX   - Set step size control for electrons/positrons
FLUKAFIX – Set step size control for hadrons/muons

Some of the ionization, transport, and MCS cards:



4/4: Biasing



Biasing - Overview
General concepts:

  Analog vs. biased Monte Carlo calculation
   

Biasing options
  (Just a few of those available in FLUKA)

  Importance biasing
  Leading particle biasing
  Multiplicity tuning
  Biasing mean-free paths 

- decay lengths biasing 
- hadronic inelastic interaction lengths 

   
Additional information:
   User-written biasing
   Weight Windows



Analog Monte Carlo simulations

• Samples particle histories from actual phase space 
distributions

• Predicts average quantities, standard deviation 
(uncertainties), and higher statistical moments.

• Preserves correlations and reproduces fluctuations (provided 
the physics is correct…)

• Can be used as a “black box” 
   

BUT

•  Can be inefficient (slow convergence).
•  Fails to predict important contributions due to rare events



Importance biasing
• Simplest, safest, and easiest to use of all biasing techniques 

 

•  importance biasing combines two techniques:

             Surface Splitting   
             Russian Roulette   

The user assigns a relative importance I to each geometry 
region (actual absolute value doesn’t matter).

The higher the interest/urgency in obtaining results in a 
region, the higher the importance to assign.



Surface Splitting

A particle crosses a region boundary, coming from a region 
of importance I1 and entering a region of higher 
importance I2 > I1:

•  the particle is replaced on average by n=I2/I1 identical 
particles with the same characteristics
•  the statistical weight of each “daughter” is multiplied by 

I1/I2<1

WARNING: If  I2/I1  is too large, excessive splitting may 
occur with codes which do not provide an appropriate 
protection .

An internal limit in FLUKA prevents excessive splitting if I2/I1 
is too large (> 5), a problem found in many biased codes.

Moving into region with higher I



Russian Roulette

A particle crosses a region boundary, coming from a region 
of importance I1 and entering a region of lower importance 
I2 < I1:

•  the particle is submitted to a random survival test: with a 
chance I2/I1 the particle survives with its weight increased 
by a factor I1/I2   

•  with a chance (1 - I2/I1) the particle is killed

Moving into region with lower I



No BIAS

Region Importance Biasing
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3.5-GeV proton on water/Al/Pb +shielding

5 cycles, 1e4 primaries each. Importance biasing is commonly used to maintain a uniform 
particle population, compensating for attenuation due to absorption or distance. 



Biased Monte Carlo simulations

• Samples from artificial distributions and applies a weight to the   
  particles to correct for the bias

• Same mean with smaller variance, i.e., faster convergence

BUT

- Cannot reproduce correlations and fluctuations

● Requires physical judgment, experience and a good 
understanding of  the problem (it is not a “black box”!)

● In general, the user needs to do a series of test runs in order to 
optimize   biasing parameters

● balance between user’s time and CPU time
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BIASING
1) region importance biasing (surface splitting or Russian 

         Roulette)
     2) multiplicity tuning at hadronic interactions

EMF-BIAS
 leading particle biasing for e+, e- and photon interactions

LAM-BIAS
mean free path biasing (decay length biasing, hadronic 
interaction length biasing) 

Main biasing input cards 
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Time allowing:

An anticipated example
(Scoring lecture tomorrow!)

To give a hint on powerful and flexible built-in scoring capabilities of FLUKA
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Brief reminder anticipating last example
We use the opportunity to follow up on previous FLUKA modelling talk.

From yesterday’s lecture on PENELOPE, relevant processes < 1 GeV:

Also accounted for in FLUKA.

Reminder from previous lecture on FLUKA models: 
photonuclear reactions, muon+- production, high-energy corrections to pair 
production, etc.

Not for this school, but keep in mind the tool is at your disposal.



64

Compton and annihilation on bound e-

64

 Bound electron momentum distributions parameterized 
out of available (relativistic) Hartee-Fock calculations for all 
(sub)shells for all elements

 Fermi momentum distribution for conduction electrons in 
metals

 Explicit bound-electron – photon kinematics for 
Compton scattering, with full account for energy, 
momentum conservation (since 2008).

 Same machinery for positron annihilation at rest: (quasi) 
first-principle based acolinearity description (next 
release!)

E.g. similarly detailed treatment in FLUKA of Compton scattering 
(relevant for example at the end of this session)



Diff xs examples

Assuming electrons free and at rest (green). Threshold from kinematics.
NOT REALISTIC! Target e- are actually bound and follow an atomic momentum distribution.

First degree of sophistication: consider “form factors” (blue). Gives average account of bin

More realistic account: atomic momenta distribution for each subshell. At E’~E shell 
structure clearly visible.

50 keV ph on Au
         E’/E

E’/E

500 keV ph on Au
         E’/E

E’/E

E
/Z

 d
s/

d
E
’

E
/Z

 d
s/

d
E
’

E: energy of absorbed photon
E’: energy of emitted photon
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Anti-coincidence Compton shield
Gamma spectroscopy:

  - Detector: high purity Ge semiconductor

  - Limit of detection governed by two factors:
  - detector efficiency: larger if larger detector used, but price limit.
  - background: due to Compton scattering (reduces contrib from main
         photopeak into the background). The lower the energy of the peak,
         the more difficult it is to distinguish from the background.

Idea: reduce background by filtering out Compton-scattered photons (!).

Surround Ge detector with something larger/cheaper: BGO (bismuth 
germanium oxide). 

Discard coincident events in both detectors → measure in anti-coincidence.



Example of gamma 
spectrum in Ge(Li) 

Data from Gamma Ray Spectrum 
Catalogue http://id.inel.gov/gamma

In Fluka : direct simulation of 
nuclear decay with correlated 
photon cascade (decay and nucl 
level database)

Noise and 
resolution added 
offline



68

A la FLUKA

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..
DETECT        NChann      Emin      Emax  TriggEne  Coi/Anti    Region  NAME
*

+Region: detector
-Region: trigger

FLUKA has built-in energy deposition scoring for events occurring in 
coincidence/anticoincidence among various regions.
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Summary

- Ionization: energy loss of charged projectiles in collisions 
with electrons of medium.

- Multiple Coulomb scattering: deflections of charged 
projectiles with screened Coulomb potential of nuclei.

- Transport: general picture + thresholds.

- Biasing: a few notions + example.

- Anticipated scoring example: Compton anti-coinc shield

We will give a general overview of a few topics:
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Backup slides
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Preliminaries: cumulants

71

Probability density function:   f(x)

Characteristic function:

Cumulant generating function: 

Cumulants:
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Goudsmit & Saunderson 1/2

Given dxs in single interaction:

Expand in Legendre pol:

Distrib after n collisions:

If num col is Poisson distrib:

Goudsmit & Saunderson (1939),
Distribution of angles after a path length s:

Main idea: given step length s, sample deflection from GS.
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Goudsmit & Saunderson 2/2

Note 1: only realistic for the shorter path lengths (no losses).

Note 2: forward peaked for short paths s.

Note 3: large no. of contributions for short paths s.
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Main GS pros and cons // Moliere

GS pros:
- valid for any distribution (as long as Legendre expandable)

GS cons: 
- numerically intensive
- large number of terms for intermediate and small steps.
- too tedious for small steps, near boundaries, etc

Alternative: Moliere approach, ~GS for an easily integrable dxs.

Additional pproximations:
→ Small deflections assumed in the derivation
→ Path length must be longer than ~4 MFPs  (GS would need lots of terms!)

Additional factors not shown: spin-rel corr, nuclear form factors.
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Example : TEPC (T.T. Boehlen et al, Phys. Med. Biol. 56 
(2011) 6545)

 Tissue-equivalent proportional counters (TEPC) measure the 
imparted energy ε and derived quantities such as the lineal energy 
y in volumes which mimic dimensions and medium characteristics 
of a mammalian cell nucleus (ICRU 1983) and are one of the 
principal instruments used in microdosimetry.

 They respond to ions passing the sensitive volume of the TEPC as 
well as to delta-rays from ions passing close to the sensitive 
volume which penetrate the cavity.

 Fluka compared with several  measurements with a spherical TEPC 
 sensitive volume filled with a tissue-equivalent gas
 inner diameter of 12.7mm. 
 Gas pressure adapted to simulate tissue of diameters between 

1.0 and 3.0μm. 
 An anode wire extends through the center of the cavity, 

surrounded by a helical grid which forms a uniform field close to 
the wire

 The cavity is surrounded by conductive tissue-equivalent plastic 
with a thickness between 1.27 and 3.7mm.

75
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Validation with TEPC measurements

76

Verifying adequacy of FLUKA energy loss straggling, delta ray 
generation/transport and MCS in microscopic volumes.

https://www.nasa.gov/mission_pages/station/research/experiments/TEPC.html

CSDA range of electrons in mat:

100 keV  → 126 um
10 keV    → 2.2 um



Reduce variance or CPU time ?
A Figure of merit of a statistical estimator

Computer cost of MC estimator = s2 x t

(s2 = Variance, t =CPU time per primary particle)

•  some biasing techniques are aiming at reducing s (Russian 
roulette), others at reducing t (Surface splitting).
•  often reducing s increases t, and viceversa
•  therefore, minimizing s2x t means to reduce s at a faster 

rate than t increases or viceversa
•  the choice depends on the problem, and sometimes a 

combination of  several techniques is most effective
•  bad judgment, or excessive “forcing” on one of the two 

variables can have unintended consequences on the other 
one, making computer cost explode
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