

Accelerator applications of FLUKA

E.Skordis On behalf of the FLUKA team

LHC Beam losses

- What is the origin of beam losses? Protons that no longer circulate in the beam
- Why?
- Regular losses (slow, partially controlled)
- Beam Beam interactions at experiments
- Beam intercepting movable devices (collimators, active absorbers, etc...)
 beam cleaning, magnet protection
- Beam interaction with residual gas Irregular losses (fast, uncontrolled)
- Accident scenarios <- failure or misbehaviour of accelerator elements (magnets, RF, collimators etc..)
- Trajectory errors, "bad" beam quality, injection errors, element misalignment, UFO, etc...

LHC BLM System

- What does BLM System stand for?
- Beam Loss Monitoring System
- What is it?
- Consists of various detectors (active dosimeters), mainly;
- Ionisation Chambers (IC)
- Little IC
- Secondary Emission Monitors (SEM)
- in development...
- Each detector has different response times and detection range
- Each detector serves a different role
- What is its purpose?

To measure beam losses around the accelerator and protect the machine from various beam loss scenarios

LHC overview

- 2*362 MJ total energy stored in both LHC beams
 (2808 bunches)*(1.15*10¹¹protons/bunch)*(7*10¹²eV/proton)*(1.602*10⁻¹⁹Joules/eV)
 = 362 MJ per beam
- ~4000 Beam Loss Monitors are installed in the LHC each capable of triggering a beam dump if the dose exceeds a certain threshold

- LHC collimation system:
 > 100 movable devices
- Betatron cleaning: IR7, momentum cleaning: IR3

BLM and Beam losses

- Do BLMs actually detect Beam losses? Yes!...Partially...
- Partially?

BLMs detect only a tiny part of the particle shower and converts it to signal (dose).

- Which part and how much? Depends... on 3 main factors:
- Position of the BLM relative to shower
- Proton energy (450... 4000... 7000... GeV)
- Beam loss scenario (Slide 3)
- What happens to the other part?
 Absorbed by the LHC elements and the tunnel walls

LHC collimation system

Capable of redirecting up to 500kW of proton loss rate in order to protect the Super Conducting Magnets from quenching (stop being SC due to energy deposition -> increase in temperature)

Collimation losses simulation overview

- Sophisticated simulations required to evaluate the BLM signal per proton lost on the collimators as well as <u>where</u> exactly and <u>how much</u> of the proton energy is deposited
- Simulation tools used:

Sixtrack and FLUKA are simulation tools regularly used at CERN to perform LHC studies.

SIXTRACK : Single particle 6D tracking code for long term tracing in high energy rings -> complemented with dedicated interaction routines, predicts losses in collimators.

Energy deposition simulation requirements for collimation losses

1. Acquire inelastic interaction loss maps in the LHC collimators produced by SIXTRACK

 10^{-2}

 10^{-7} 19400

19 600

 $\begin{array}{c} \widehat{\mathbf{T}} & 10^{-3} \\ \widehat{\mathbf{E}} & 10^{-4} \\ 10^{-5} \\ 10^{-6} \end{array}$

- 2. FLUKA simulation set up
 - Model complex geometries of all key elements of the LHC

Set up the simulation parameters

20,000

- Source routine
- Magnetic fields routines

20200

20 400

20600

- Physics settings
- Scoring

19 800

• Etc...

OMA school 08/11/2017

TCP simulated Geometry

OMA school 08/11/2017

IR7 primary collimators picture

IR7 primary collimators picture

Impact at TCTH

Ion Vaccum Pump VPI-30L

	StarCell®	Noble Diode	Diode
Nominal pumping speed for Nitrogen (*) (I/s)	65	68	75
Operating life at 1x10 ⁻⁶ mbar (hours)	80,000	50,000	50,000
Maximum starting pressure (mbar)	≤ 5x10 ⁻²	≤ 1x10 ⁻³	
Ultimate pressure	Below 10 ⁻¹¹		
Inlet flange	6" CFF (NW 100) AISI 304 ESR SST		
Maximum baking temperature (°C)	350		
Weight, kg (Ibs)	19 (42)		

(*) Tested according to ISO/DIS 3556-1-1992

Pumping Speed vs. Pressure Graph

Nacion Plus 75 Pumping Speed vs. Pressure Graph

Outline Drawing

OMA school 08/11/2017

E. Skordis Dimensions: millimeters (inches)

Impact at TCTV

Long term displacement damage (DPA)

IR7 FLUKA geometry

• Long Straight Section

OMA school 08/11/2017

E. Skordis

Residual dose rate

IR7 MBWA - MBWB 7 TeV Peak Dose profile

IR7 MQW 7 TeV Peak Dose profile

IR7 2013 Collimation Quench Test FLUKA – Sixtrack Simulations

IR7 DS Peak power deposition in the SC coils

IR7 extended BLM signal comparison Experimental vs Simulation 2015 collimation QT

Geometry visualisation and values of interest

All values are normalised per proton impacting the beam pipe

OMA school 08/11/2017

E.Skordis

Conclusions

- Good understanding of the collimation losses through the Sixtrack-FLUKA modelization (Excellent BLM agreement)
- Vital: Identification and quantification of the LHC hotspots (weak links, Dose, DPA, energy deposition) and correlation with BLM signals
- FLUKA Simulations are essential for the operation of the LHC and will continue to grow in demand

Thank you!

X-ray image simulation

