

CLIC detector and physics study overview

Rickard Stroem (CERN) on behalf of the CLICdp Collaboration

CLIC Week 2018, January 24, 2018

CLICdp Collaboration

CLIC detector and physics study (CLICdp)

- Physics studies
- Detector technology R&D
- Aim to produce a series of reports for the European Strategy for Particle Physics (ESPP)
- In total 158 members from 30 institutes in 18 countries
 - New members: AIBU, Bolu, Turkey (Haluk Denizli) and Universität Siegen, Germany (Wolfgang Kilian)
- New spokesperson: Aidan Robson (CERN/Uni. of Glasgow)
- Close connection to ILC detector concepts, CALICE, FCAL, AIDA-2020 project

CLICdp working groups

More info: clicdp.cern.ch

Outline

CLIC accelerator footprint: https://cds.cern.ch/record/2297076

- A staged physics programme
- The CLIC detector 'CLICdet'
- Detector technology R&D
- Simulation and reconstruction software
- Plans for the European strategy update

A staged physics programme

- To fully exploit physics potential, CLIC would be implemented in several energy stages going up to multi-TeV energies
- Defined by physics case w. considerations for technical constraints
- 380 GeV / 1.5 TeV / 3.0 TeV
- Baseline scenario of 22 years (CERN Yellow report CERN-2016-004)
- Initial stage at 380 GeV optimised for Higgs and top precision physics
 - additional 100 fb⁻¹ around 350 GeV for top mass threshold scan
- Electron beam polarisation at all energies

Luminosity at 3 TeV: 5.9×10^{34} cm⁻²s⁻¹ of which 2.0×10^{34} cm⁻²s⁻¹ is above 99% of \sqrt{s}

- 1) $\sqrt{s} = 380 \text{ GeV} (500 \text{ fb}^{-1})$
- Higgs/top precision physics
- Top mass threshold scan
- 2) $\sqrt{s} = 1.5 \text{ TeV } (1.5 \text{ ab}^{-1})$
- Focus: BSM searches
- Higgs/top precision physics
- 3) $\sqrt{s} = 3 \text{ TeV } (3.0 \text{ ab}^{-1})$
- Focus: BSM searches
- Higgs/top precision physics

Staging can be adapted to possible LHC discoveries

Higgs physics at CLIC

- CLIC covers several Higgs production processes
- Comprehensive report on our Higgs studies in Eur. Phys. J. C 77 (2017) 475

Highlights

- Higgsstrahlung e⁺e⁻→ZH Higgs properties can be measured independent of the decay mode by studying the Z-recoil mass (unique to lepton colliders)
- Vector-boson fusion (enhances the overall knowledge of the Higgs boson)
- Extraction of top Yukawa coupling ($e^+e^- \rightarrow ttH$) + (new) CP violation in ($e^+e^- \rightarrow tt\phi$)
- Double Higgs production requires high luminosity and high centre-of-mass energy simultaneous extraction of tri-linear self-coupling ($\Delta\lambda$ CLIC: ~10% from differential distributions) and quartic coupling (gHHWW: ~3%)
- Higgs couplings and width can be determined with a percent-level statistical uncertainty
- >> Talk by Yixuan Zhang "Measurement of ttH production"
- → Talk by Goran Kacarevic "Results from H→gamma+gamma study at 3 TeV"

Model-independent (MI) global fits

- A large number of top quark pairs are produced at CLIC
- Top quarks have not been studied in electron-positron collisions yet
- The top quark is of particular interest:
 - Couples strongly to the Higgs field
 - Relation to SM gauge bosons
 - Connection to BSM scenarios
- CLICdp is preparing a comprehensive top physics report
 - >> Talk by Philipp Roloff "Top paper overview"

- FCNC top decays competitive limits on rare decays such as t \rightarrow cH and t \rightarrow c γ
 - >> Talk by Filip Zarnecki "Top FCNC decays"
- Phenomenological interpretations
 - >> Talk by Andrea Wulzer "CLIC Physics Potential"

Highlights

- **Top quark threshold scan** around 350 GeV (extract mass and width), smearing due to ISR and LS (new luminosity spectra optimisation), ~50-75 MeV (LHC: 500 MeV)
 - >> Talk by Frank Simon "Luminosity spectra optimisation for the mass determination in threshold scan"
- Top quark mass from radiative events (e⁺e⁻ → tt+ISR) (380 GeV)
 - >> Talk by Esteban Fullana Torregrossa

New: using new optimised CLIC luminosity spectrum with lower bunch charge:

Highlights

- Top quark couplings to Z and γ are among the main focuses and a priority for the top physics programme at CLIC
- Substantial improvements in the last year
- Complete tt study at all three stages: 380 GeV, 1.5 TeV, 3 TeV (ongoing work)
- Semi-leptonic ttbar (tt → qqqqlv), lepton charge used to reconstruct the charge of the top/anti-top
- Cross-section and forward-backward asymmetry
- Set of statistically optimal observables
- Combined EFT interpretation, dim-6 operators (TeV operation provides better sensitivity to contact-interaction operators)

• Resolved analysis (380 GeV)

- Production near threshold (lower effective centre-of-mass due to ISR and beamstrahlung)
- Use b-tagging, search for W, or 3 jets with a combined invariant mass near m_t
- **→** Talk by Ignacio Garcia Garcia "Top coupling extraction" (380 GeV + EFT)
- Semi-resolved/semi-boosted analysis (500 GeV 1.5 TeV)
 - Lower effective centre-of-mass due to ISR and beamstrahlung
 - Jet sub-structure variables
- Boosted analysis (large R-jets) (1.5 TeV, 3 TeV)
 - Standard identification techniques may not work:
 - b-tagging not foreseen, tracks are very close to each other
 - W decay products not isolated from each other or b-jet
 - Idea: tag tops by identifying prongy structure + kinematic cuts
- **→** Talk by Nigel Watson "Top pair production at 1.4 TeV" (semi-resolved + boosted)

Beyond SM physics at CLIC

- The clean collision environment CLIC is particularly suited to study non-coloured TeV-scale particles such as sleptons, gauginos, neutralinos, etc.
- CLICdp is preparing a report on the BSM studies and physics potential
- Indirect searches through precision observables
 - Allow discovery of BSM signals beyond the centre-ofmass energy of the collider
- Direct production of new particles
 - Possible up to the kinematic limit (√s/2 for pair production)
 - Precision measurements in general always able to measure the mass and production cross-sections to percent-level
 - Complements the HL-LHC program to measure heavy SUSY partners

Beyond SM physics at CLIC

Highlights

- Vector boson scattering (VBS) CLICdp-Conf-2017-018
 - Studied $e^+e^- \rightarrow W^+W^-\nu\nu$ and $e^+e^- \rightarrow Z^0Z^0\nu\nu$ using fully hadronic events (largest branching fraction and sensitivity)
 - Sensitive to anomalous gauge couplings
 - Clean experimental signal
 - CLIC has competitive results, factor ~10 more sensitive at 3
 TeV (new) compared to 1.5 TeV → illustration of the benefit
 of multi-TeV operation
- Di-photon production e⁺e⁻ → γγ (3 TeV)
 CLICdp-Conf-2017-018
 - Search for deviations from QED, sensitive to finite electron size, extra dimensions, etc.
 - Clean experimental signal + accurate theory predictions
 - Expected sensitivities ~15-20 times better than limits set by LEP (Physics Reports Volume 532, Issue 4, 2013, p. 119-244)

Example models (CLIC 3 TeV, up to 2 ab⁻¹)

New particle/scenario	CLIC3000 reach
Anomalous gauge couplings*	$-0.001 < \alpha_4 < 0.0011$ $-0.00070 < \alpha_5 < 0.00074$
Extra dimensions $M_S/\lambda^{1/4}$ (95% CL)	~16 TeV
Contact interactions (Λ') (95% CL)	~21 TeV
Chargino, neutralinos	≲1.5 TeV
Sleptons	≲1.5 TeV
Z' (SM couplings)	~20 TeV
Triple gauge coupling (95% CL)	λ _γ : 0.0001
Higgs composite scale	~70 TeV

CLIC detector model 'CLICdet'

- Iron **return yoke** instrumented with muon detectors, for muon identification
- 4 T superconducting **solenoid magnet** (R_{in} = 3.4 m, L = 8.3 m)
- Fine grained calorimetry system (ECAL and HCAL) using particle flow algorithm
 - Strong contribution to the CALICE and FCAL calorimeter R&D collaborations
- **▶ Talks at the CLICdp calorimeter** R&D session (Thursday)
- **→** Talk by Felix Sefkow "Calorimetry from LC to the LHC"

 Low-mass tracking system with separate tracker and vertex detector

- Enclosed in forward region: LumiCal (luminosity monitoring), BeamCal (extended coverage)
- >>> Talk by André Sailer "FCAL: validation and performances"

More details: "CLICdet: The post-CDR CLIC detector model", CLICdp-Note-2017-001

CLIC detector requirements

Vertex detector requirements

- Driven by displayed vertices resolution + increased precision for low-p_T tracks
 - High single-point resolution: ~3 μm
 - Ultra-thin: ≤ 0.2% X₀ / layer (50 µm active silicon)
 - Air cooling, low-power ASICs

Tracker detector requirements

- Driven by momentum resolution: $\sigma_{pT} / p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$
 - Single-point resolution: ~7 µm (large pixels / small strips)
 - Material budget 1-2% X₀ / layer
 - Many layers, large outer radius → has to cover ~100 m² surface area → integrated sensors w. large pixels (≤ 30 µm × 1 mm) + low-mass supports, cabling and cooling

Calorimeter detector requirements

- Need very good jet-energy resolution (Particle Flow Algorithm (PFA))
 - σ_E / E ~ 3.5% in the range 100 GeV 1 TeV

Transverse-momentum resolution in the CLIC tracking detector for various single-point resolution

CLIC detector requirements

Aspects of detector design driven by CLIC machine environment

- 20 ms gaps between bunch trains → power pulsing, trigger-less readout
- Large beam-induced background → few % maximum occupancy
 - limits cell size and sets inner radius
 - Overall need for precise timing to suppress background
 - ~10 ns hit time-stamping in vertex/tracker detector
 - use of depleted sensors (electron drift + matched readout)
 - 1 ns accuracy for calorimeter hits
 - Reconstruction software requirement: pattern recognition

CLIC beam structure illustration

Detector

CLIC pixel-detector technology R&D

→ Talk by Hendrik

Jansen "ELAD

Development"

Sensor

Broad R&D program on sensors, readout, powering, interconnects, mechanical integration and cooling

- Beam tests: of both hybrid (readout ASICs down to 65 nm) and monolithic assemblies
- Ongoing R&D to find a technology that simultaneously fulfils all the CLIC requirements
- \bullet Challenging: position-resolution target of ~3 µm for the vertex detector
- New concept to increase charge sharing: use of sensors with deep implantations that alter the electric field (**ELAD**)
- Future developments:
 - Concept for tracker based on monolithic HR-CMOS (following promising studies in view of the requirements)
 - New SOI prototypes in the pipeline
- **▶** Please see the "Vertex and Tracker R&D session" (Tuesday+Wednesday)

Hybrid assemblies (considered for vertex detector)

Monolithic assemblies (currently considered for tracker)

CLIC pixel-detector technology R&D

Development of DAQ/software frameworks

- **CaRIBOu** is a versatile readout system targeting a multitude of detector prototypes (commissioned for CLICpix2+C3PD)
- Allpix² generic pixel detector simulation framework (understand/ predict sensor+readout response)
 - **→** Talk by Simon Spannagel "Allpix Squared A Generic Pixel Detector Simulation Framework"

Si pixel simulation using AllPix² illustrating charge collection

Hybrid assemblies (considered for vertex detector)

Monolithic assemblies (currently considered for tracker)

Validation of CLICdet

Ongoing validation studies with CLICdet

- Ensure that performance meets requirements
- Validate new simulations and reconstruction chain
- Flavour tagging, tracking, PFA, forward region

Flavour tagging

- Studied flavour-tagging for di-jet samples (bb, cc, qq (uds))
- b- and c-tagging performance as function of vertex-detector design parameters

→ Talk by Ignacio Garcia Garcia "Flavour tagging: validation and performances"

Validation of CLICdet

Tracking

- Developed track finding tool based on conformal transformations
- Kalman fit for helix track fitting
- Performs well down to 10° in CLIC case
- Achieved momentum resolution 2 x 10⁻⁵ GeV⁻¹ for high energy muons in the barrel (impact parameter resolution ~2 μ m)
- Jet performances mostly unaffected by bkg overlay > 1 GeV

>> Talk by Emilia Leogrande "Tracking: validation and performances"

Example of tracking in conformal space

Validation of CLICdet

Validation of Particle Flow Algorithm (PFA) performance

- Modification in PFA to address long standing issues of inefficiency of charged particle ID in calorimeter transition region (only minor effect of gap remaining)
- Adopted software compensation with CLIC specific weights (applied to all HCAL hits)
- Achieved jet energy resolution between 3.1-4.5%
 - Comparable to the performance using default weights for jets up to 190 GeV, improvements ~10% for larger jet energies

>> Talk "Calorimetry: validation and performance" by Matthias Weber

Forward region

- Detailed look at performance
- Good reconstruction efficiencies, energy resolution as expected
- Applied reconstruction for BeamCal to LumiCal: better control over cluster merging
- Achieving expected polar angle resolution

→ Talk "FCal: validation and performances"by André Sailer

Simulation and reconstruction software

- Simulation and reconstruction framework (iLCSoft) important part in physics analysis, detector optimisation/validation
- Transitioned to DD4hep-based detector description for CLICdet (strong participation from CLICdp) growing user base in HEP: CLIC, ILC, FCC (LHCb, CMS)
- New simulation and reconstruction chain is ready
 - Promising results from test production
 - Preparing large scale production chain
- Physics simulation and reconstruction for CLICdp performed on the grid (**iLCDirac** for managing submissions)
- Progress in creating a CLICdet Delphes card, validation is ongoing (Delphes is a framework for fast simulation of a generic collider experiment)

Production with the new software and reconstruction chain

- ➤ Talk by Marko Petrič
 "Software devel. and
 detector model"
- ➤ Talk by Hamza Zafar "ILCDirac Status and Plans"

CLICdet Delphes card validation - Higgsstrahlung $e^+e^- \rightarrow ZH (Z \rightarrow qq)$

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

CLICdp documents for European Strategy

- **Updated Baseline** for a Staged Compact Linear Collider
 - CERN-2016-004 🗸
- Higgs Physics at the CLIC Electron-Positron Linear Collider
 - Eur. Phys. J. C77 (2017) no.7, 475 🗸
- The new optimised CLIC detector model CLICdet
 - CLICdp-Note-2017-001 🗸
 - Detector performance report in progress ✓
- Top physics at the CLIC Electron-Positron Linear Collider
 - Complete draft in progress for early 2018 ✓
- Extended **BSM studies**
 - CLIC BSM overview report in 2018
- Detector technologies for CLIC
 - Summary report in 2018
- Plan for the period ~2019-2025 in the case CLIC is supported by next strategy

- The CLICdp Collaboration is preparing for the European Strategy Update for HEP in 2019-2020
- CLICdp reports will serve as ingredients for CLIC(dp) summary report
- CLICdp advisory board (review: 17-18 April 2018)
 - Chair: **Dave Charlton** (Univ. Birmingham)

Summary and conclusions

- The CLIC staging scenario is optimised for a broad precision physics program (Higgs, top, BSM)
- Optimisation studies of the CLICdet **detector model finalised**, now under validation
- Broad and active R&D on the vertex and tracking detectors with focus of finding technologies that simultaneously fulfil all the CLIC requirements
- The CLICdp collaboration contributes to the CALICE and FCAL calorimeter R&D collaborations. They have constructed and tested finegrained prototypes of SiW ECALs, ScW HCAL, and forward calorimeters
- The CLICdp Collaboration is currently preparing a series of reports and summary documents for the European Strategy Update

Thanks
to everyone
who provided
material for
this talk!

Additional material

Higgs physics at CLIC

Dominant Higgs production at CLIC

Cross-section for unpolarised beams (no ISR or beamstrahlung effects included)

Some highlights:

- Higgsstrahlung $e^+e^- \rightarrow ZH$ Higgs properties can be measured independent of the decay mode by studying the Z-recoil mass (unique to lepton colliders)
- Vector-boson fusion (enhances the overall knowledge of the Higgs boson)
- Extraction of top Yukawa coupling (e⁺e⁻→ttH)
- Double Higgs production requires high luminosity and high centre-of-mass energy simultaneous extraction of tri-linear self-coupling ($\Delta\lambda$ CLIC: ~10%) and quartic coupling (gHHWW: ~3%)
- Higgs couplings and width can be determined with a percent-level statistical uncertainty
- Unique sensitivity to invisible decay modes: $\Gamma_{\text{invis}}/\Gamma_{\text{H}} < 1 \%$ at 90 % C.L.
- High flavour-tagging efficiencies → Higgs branching fractions
- >> Talk by Yixuan Zhang "Measurement of ttH production"
- **→** Talk "Results from H→gamma+gamma study at 3 TeV"

Higgs physics at CLIC

Model-independent (MI) global fits

Higgs width is a free parameter allows for additional non-SM decays.

Model-independent extraction only possible for lepton colliders

Model-dependent (MD) global fits

Constraining "LHC-style", assuming no invisible Higgs decays (model-dep.), fit to deviations from SM BR's

- = Accuracy significantly better than HL-LHC or not possible at hadron colliders
- = Accuracy comparable to HL-LHC

Results from the full CLIC programme:

- ~5 years of running at each stage incl. e⁻ polarisation above 1 TeV
- MI: down to ~0.8 % for most couplings (only at lepton colliders)
- MD: ~0.1-1 % for most couplings
- Accuracy on Higgs width:
 - ~3.6 % (MI)
 - ~0.3 % (MD)
- Higgs mass with 24 MeV precision for
 1.5 TeV and 3 TeV operation combined
 (HL-LHC: ~50 MeV per experiment)

More details: "<u>Higgs physics at the CLIC</u> <u>electron-positron linear collider</u>"

CLIC detector R&D - other applications

- Compared to LHC, **CLIC detectors** need to have **smaller** individual detector cells, **better** position resolution and **more accurate** time stamping
- Such general features are of interest for other applications as well
- Technologies developed for CLIC are now being used within particle physics and society applications
- Silicon pixels detectors co-developed by CLICdp within the Medipix/Timepix collaborations are used in e.g. material analysis with X-rays, medical imaging, dosimetry in space missions, dosimetry for hadron therapy, school projects, electron cryo-microscopy (2017 chemistry Nobel prize), LHCb detector upgrade, CAST experiment
- Fine-grained calorimetry, initially developed for linear collider experiments, is now adopted by other experiments (e.g. CMS and ATLAS detector upgrades).
- The silicon photomultipliers developed for linear collider hadron calorimeters are now used in time-of-flight assisted Positron Emission Tomography (PET)

Timepix detector at ISS, Astronaut Chris Cassidy, 2013, NASA

Combined p_T and timing cuts

1.2 TeV background in reconstruction time window

Cuts depend on particletype, p_T and detector region, protect high- p_T physics objects

85 GeV background after tight cuts

$$e^+e^- \to H^+H^- \to t\bar{b}b\bar{t} \to 8\,jets$$