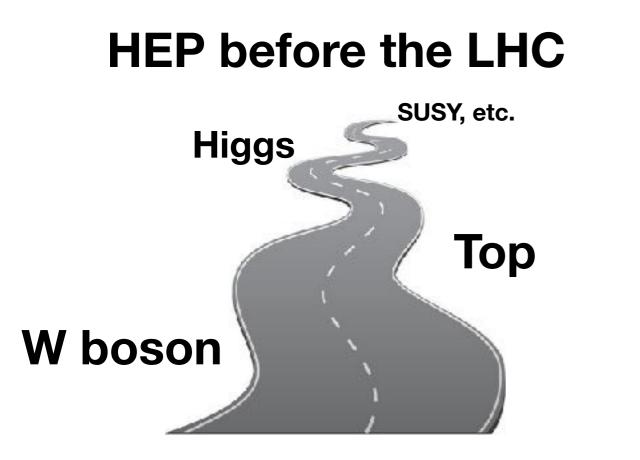
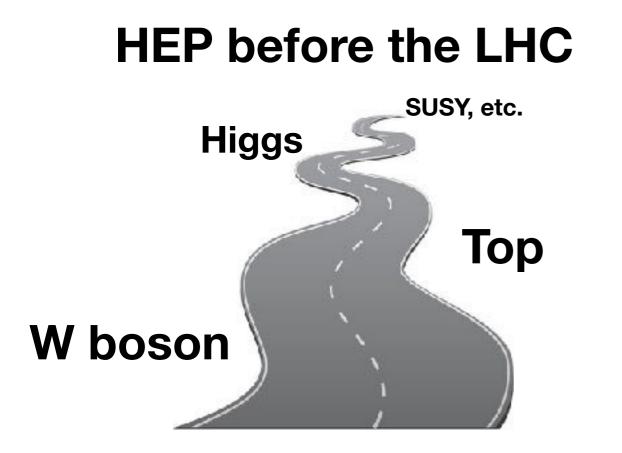
The CLIC Physics Potential

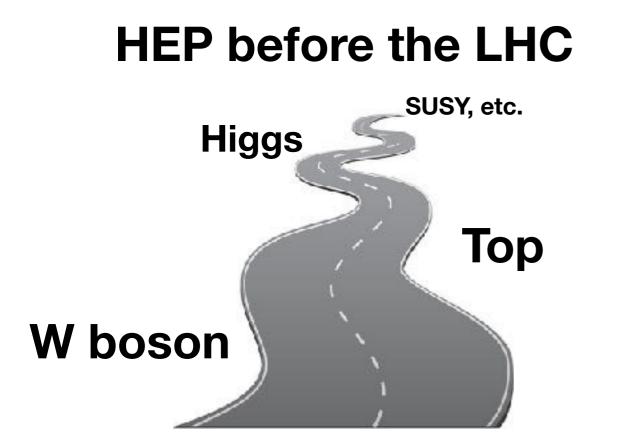
Andrea Wulzer



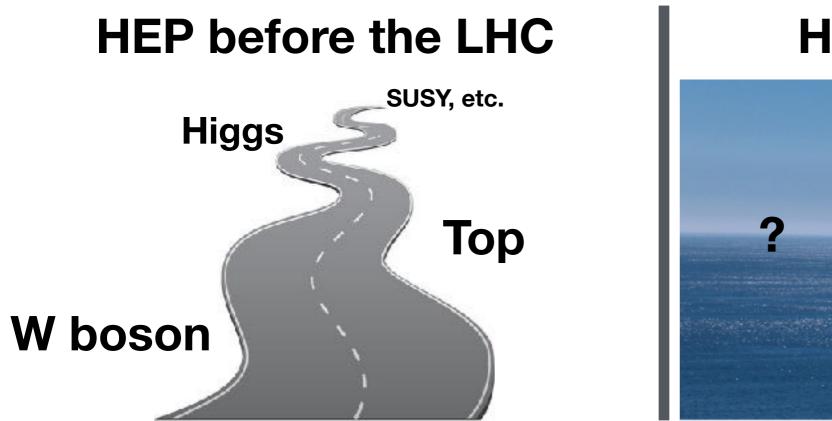
HEP before the F.C.



HEP before the F.C.



HEP before the F.C.



HEP before the F.C.

Particle physics is not validation anymore, rather it is exploration of unknown territories *

* Not necessarily a bad thing. Columbus left for his trip just because he had no idea of where he was going !!

Measuring and comparing with SM predictions is a systematic, BSM-independent exploration strategy

Measuring and comparing with SM predictions is a systematic, BSM-independent exploration strategy But drawing implications requires BSM.

Measuring and comparing with SM predictions is a systematic, BSM-independent exploration strategy

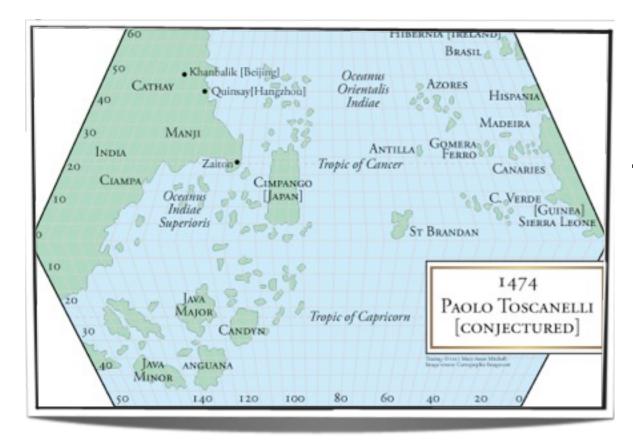
But drawing implications requires BSM.

BSM must set a destination, not to go around in circles: BSM = **draw maps** to guide us in F.C. ocean

Measuring and comparing with SM predictions is a systematic, BSM-independent exploration strategy

But drawing implications requires BSM.

BSM must set a destination, not to go around in circles: BSM = **draw maps** to guide us in F.C. ocean



Columbus had Toscanelli's map.

It was terribly **wrong**, but **served the purpose**

Measuring and comparing with SM predictions is a systematic, BSM-independent exploration strategy

But drawing implications requires BSM.

BSM must set a destination, not to go around in circles: BSM = **draw maps** to guide us in F.C. ocean

If N.P. is heavy, EFT map:

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm BSM}^{d=6}$

operator estimate from structural BSM assumptions. **Different assumptions produce different maps**

Measuring and comparing with SM predictions is a systematic, BSM-independent exploration strategy

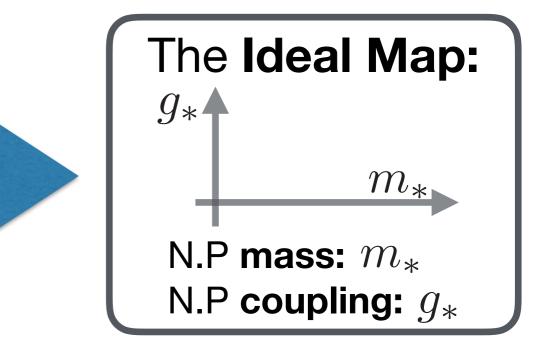
But drawing implications requires BSM.

BSM must set a destination, not to go around in circles: BSM = **draw maps** to guide us in F.C. ocean

If N.P. is heavy, EFT map:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{BSM}}^{d=6}$$

operator estimate from structural BSM assumptions. **Different assumptions produce different maps**

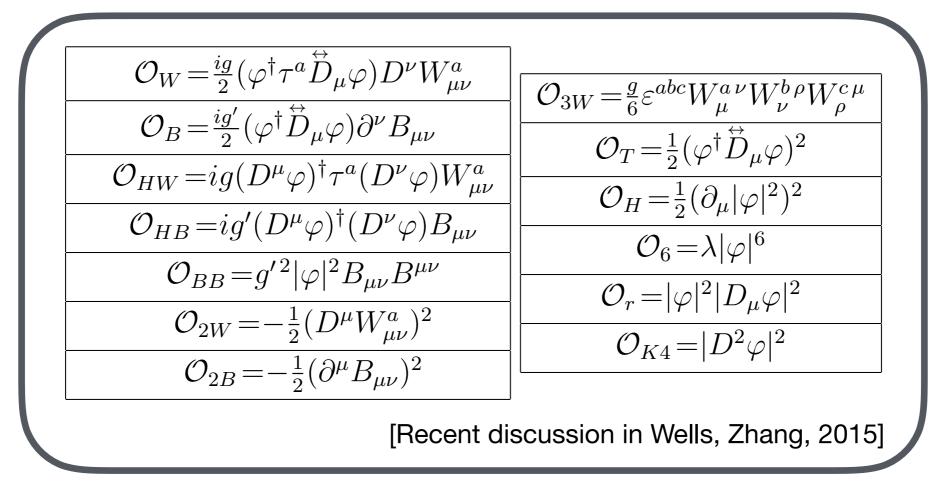


The EFT Map

Dimension-6 operators classified:

Universal

BSM only coupled to SM bosons, negligible direct coupling to fermions



The EFT Map

Dimension-6 operators classified:

Universal

BSM only coupled to SM bosons, negligible direct coupling to fermions

Top-philic

direct BSM coupling to top. Motivated by Naturalness and flavour.

$$\begin{aligned} & Q_{\varphi t} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t) \\ & \mathcal{N}_{tB} = (\bar{t} \gamma^{\mu} t) (\bar{e} \gamma_{\mu} e + \frac{1}{2} \bar{l} \gamma_{\mu} l) \\ & Q_{t\varphi} = (\varphi^{\dagger} \varphi) (\bar{q} t \widetilde{\varphi}) \\ & Q_{tB} = (\bar{q} \sigma^{\mu\nu} t) \widetilde{\varphi} B_{\mu\nu} \\ & Q_{\varphi q}^{(1)} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{q} \gamma^{\mu} q) \\ & Q_{\varphi q}^{(3)} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{q} \tau^{I} \gamma^{\mu} q) \\ & Q_{tW} = (\bar{q} \sigma^{\mu\nu} t) \tau^{I} \widetilde{\varphi} W_{\mu\nu}^{I} \\ & \mathcal{N}_{qB} = (\bar{q} \gamma^{\mu} q) (\bar{e} \gamma_{\mu} e + \frac{1}{2} \bar{l} \gamma_{\mu} l) \\ & \mathcal{N}_{qW} = (\bar{q} \tau^{I} \gamma^{\mu} q) (\bar{l} \tau^{I} \gamma_{\mu} l) \end{aligned}$$

The EFT Map

Dimension-6 operators classified:

Universal

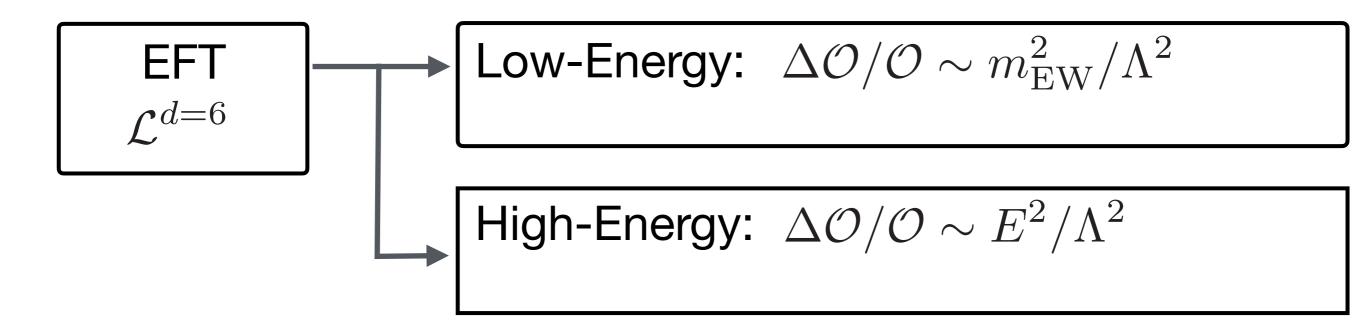
BSM only coupled to SM bosons, negligible direct coupling to fermions

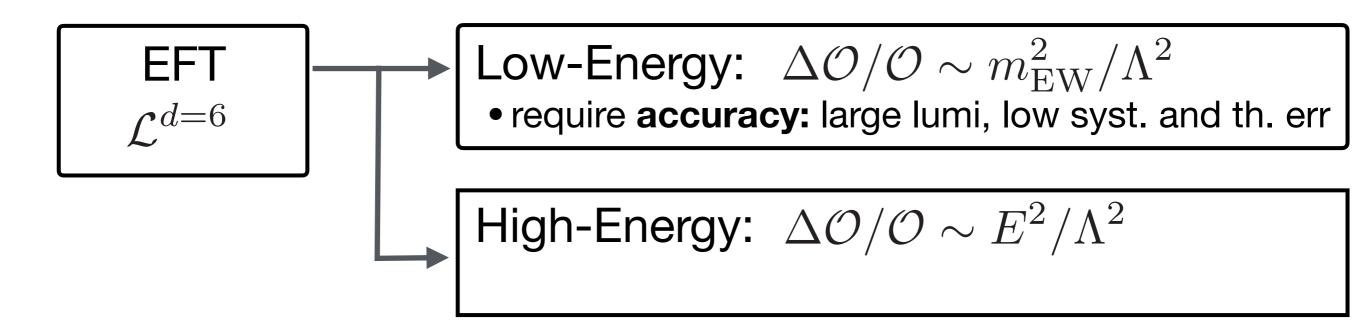
Top-philic

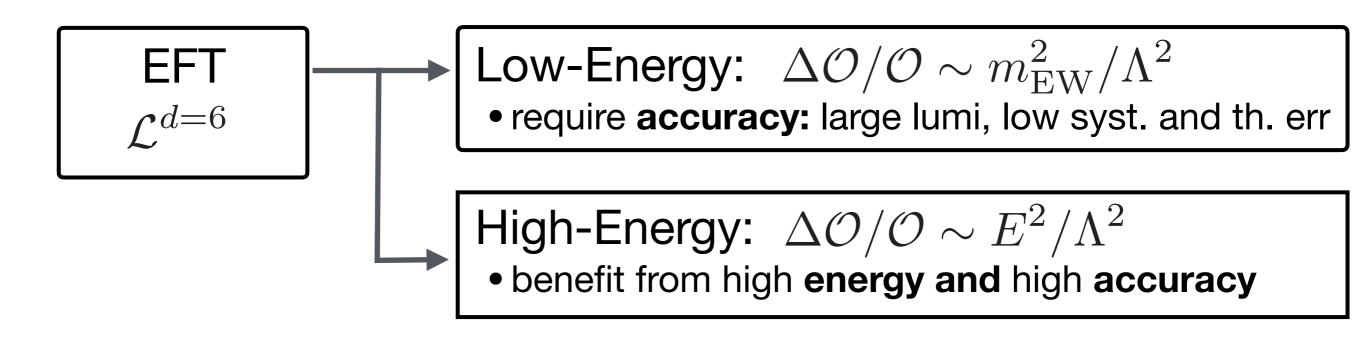
direct BSM coupling to top. Motivated by Naturalness and flavour.

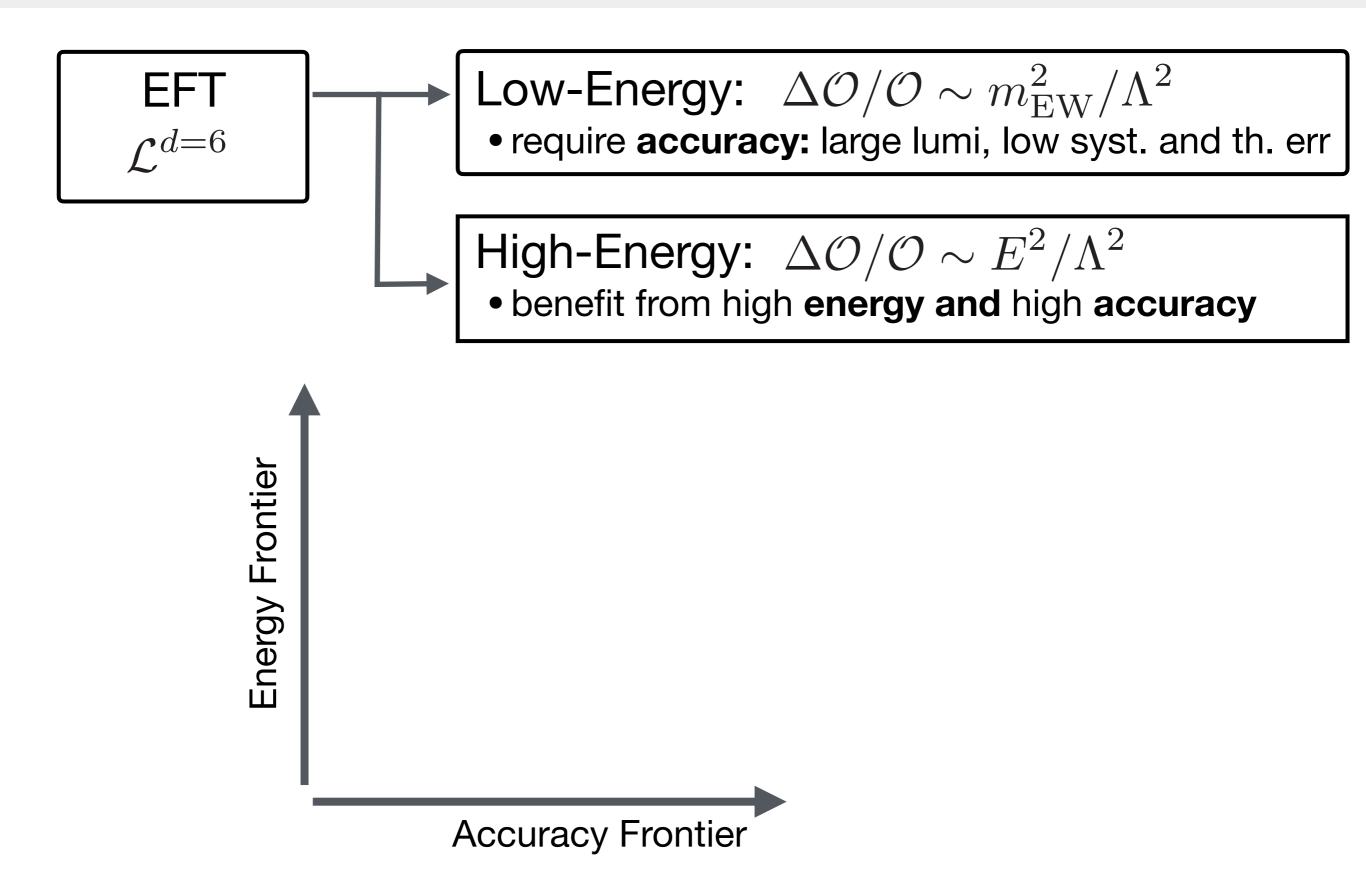
Flavour-breaking

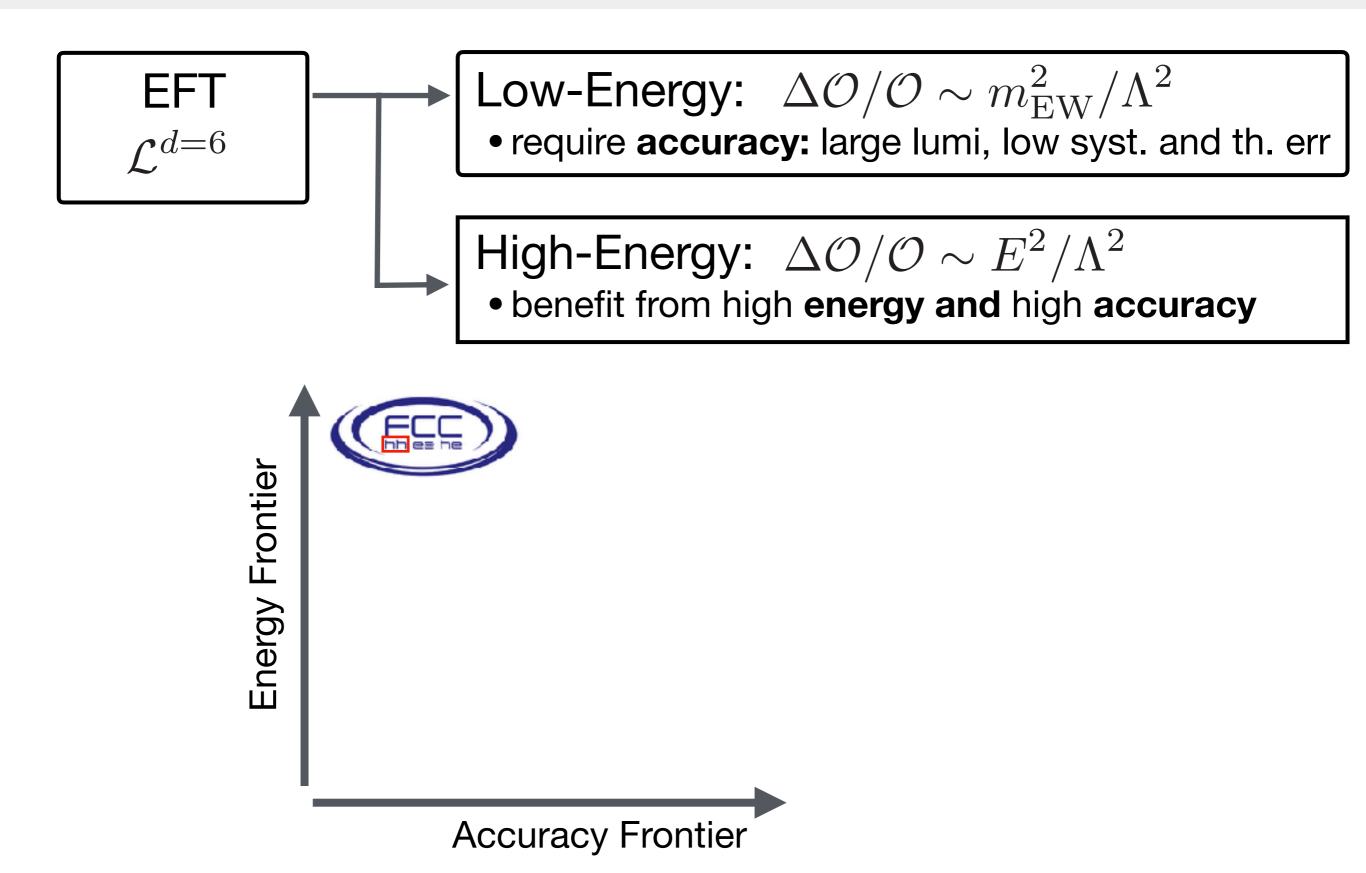
light fermion couplings in BSM, such that not excluded by flavour physics. To be studied by examples, or on the basis of motivated flavour models

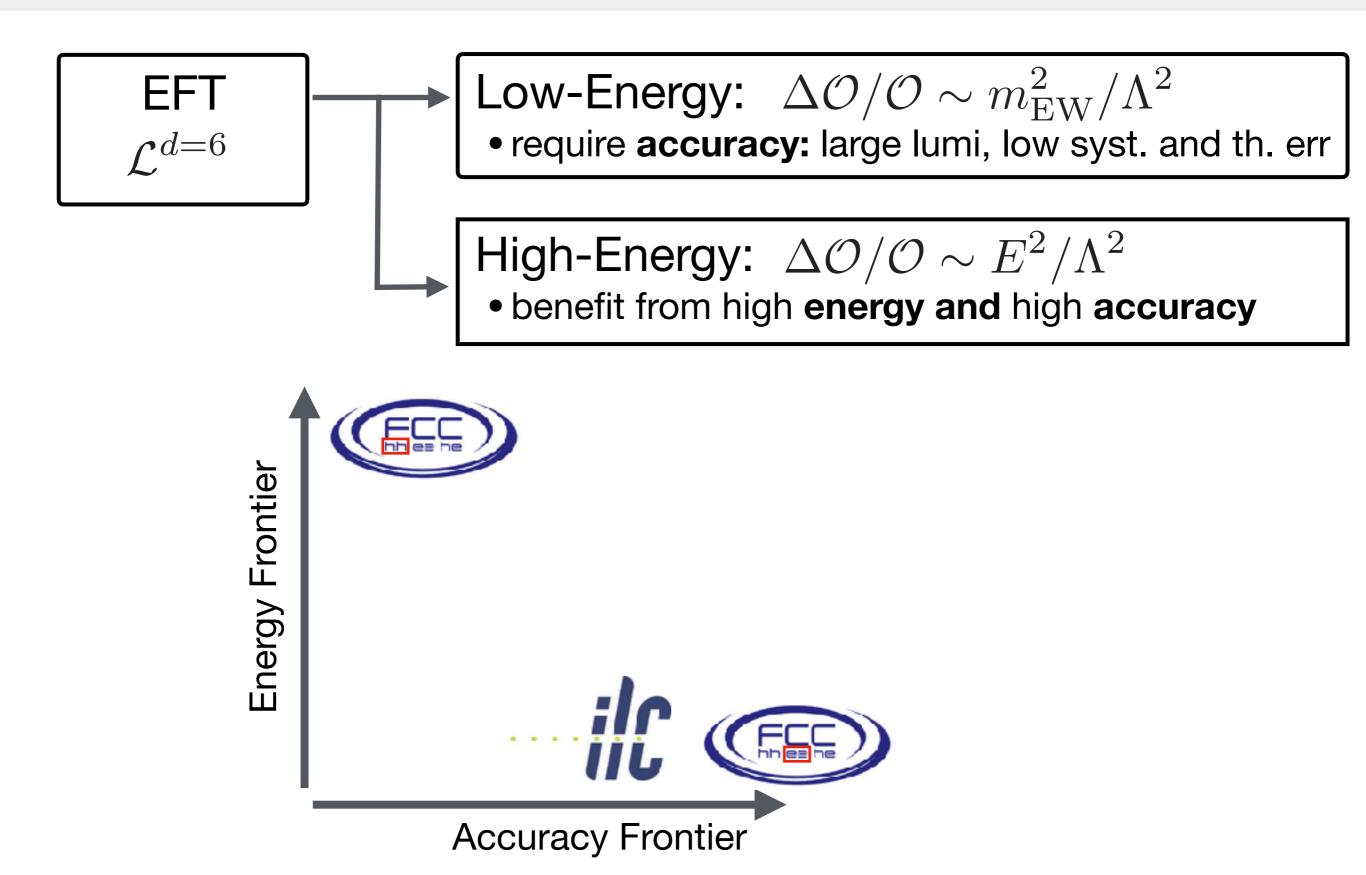


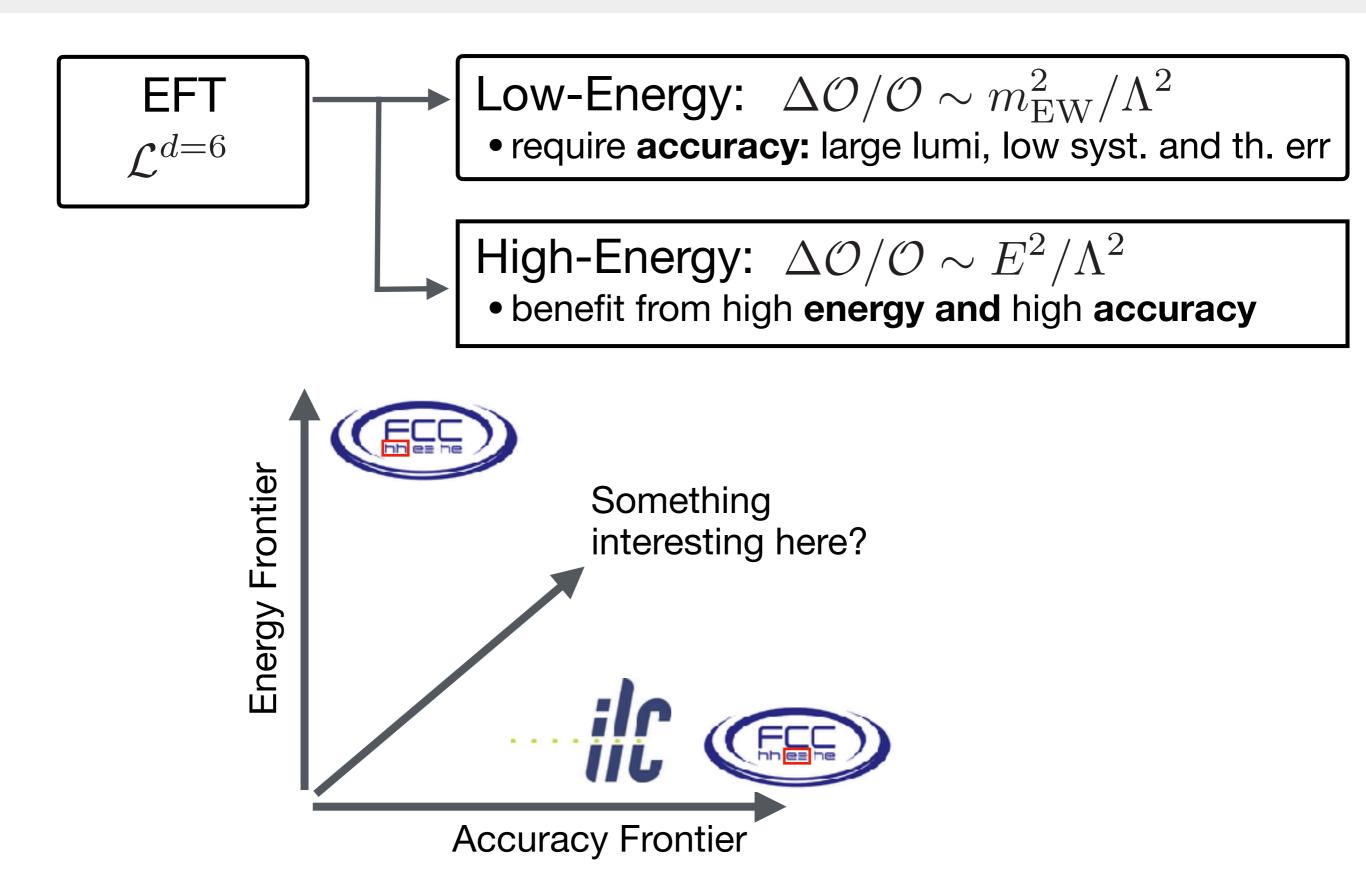


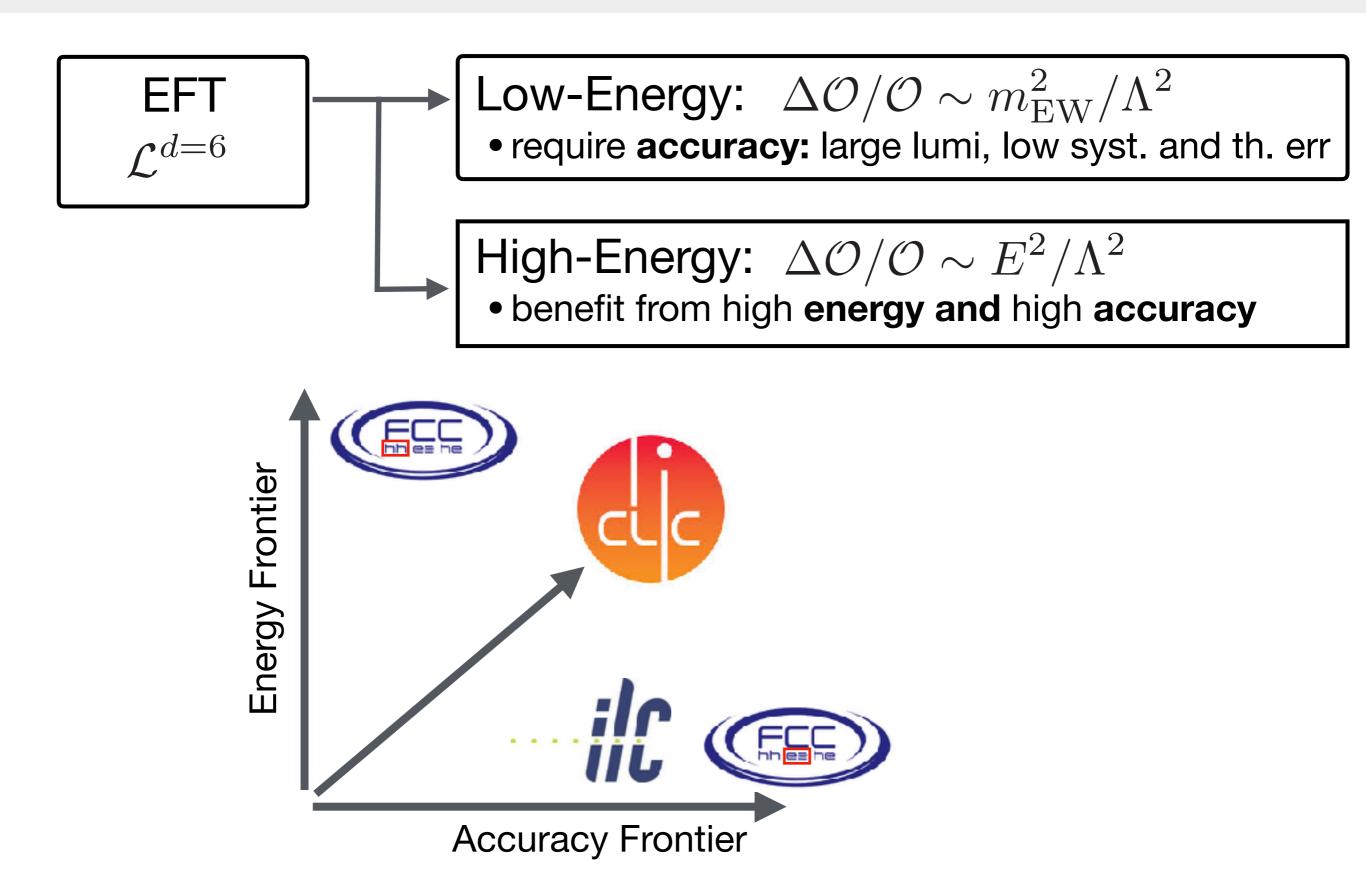


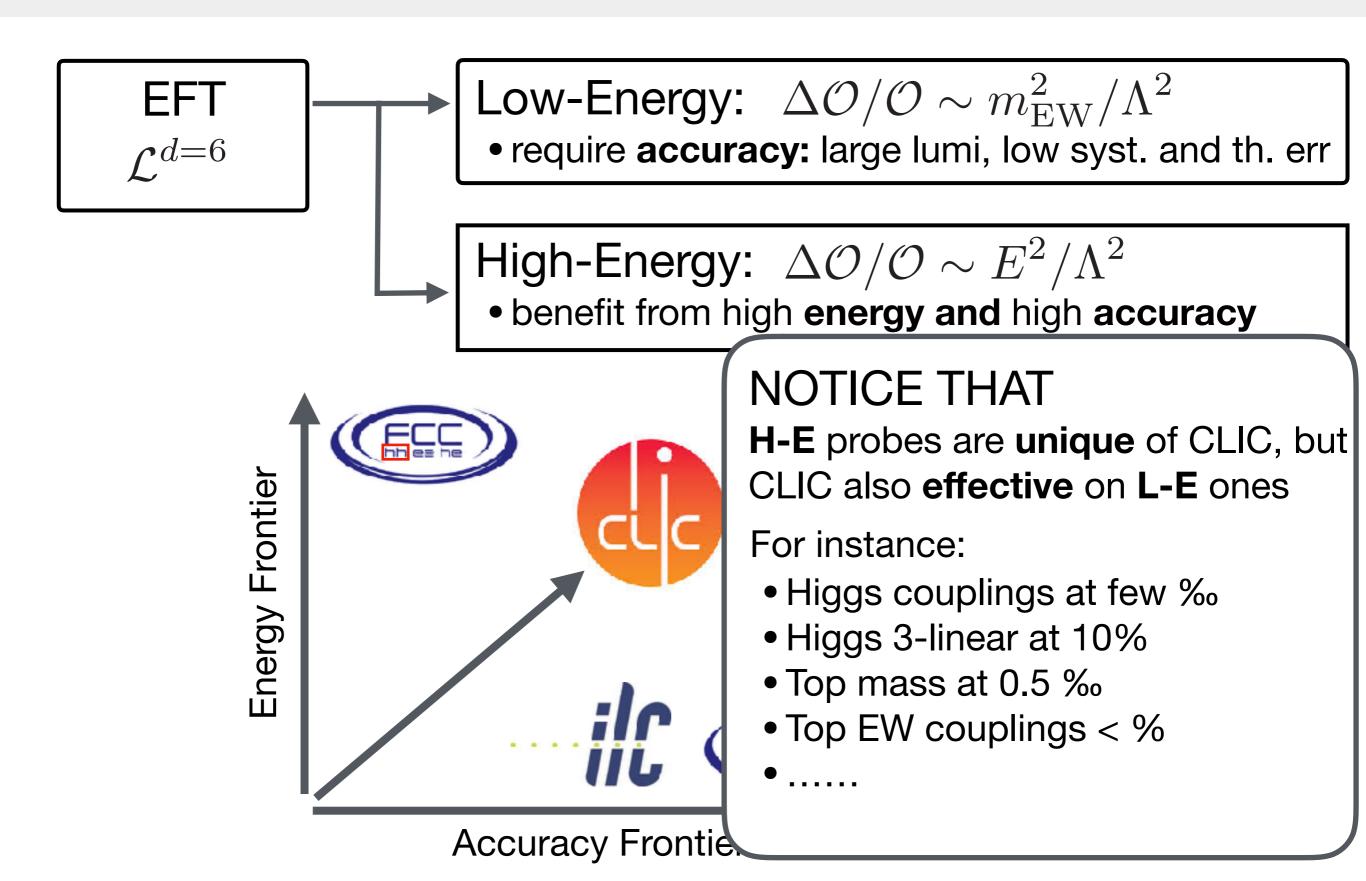




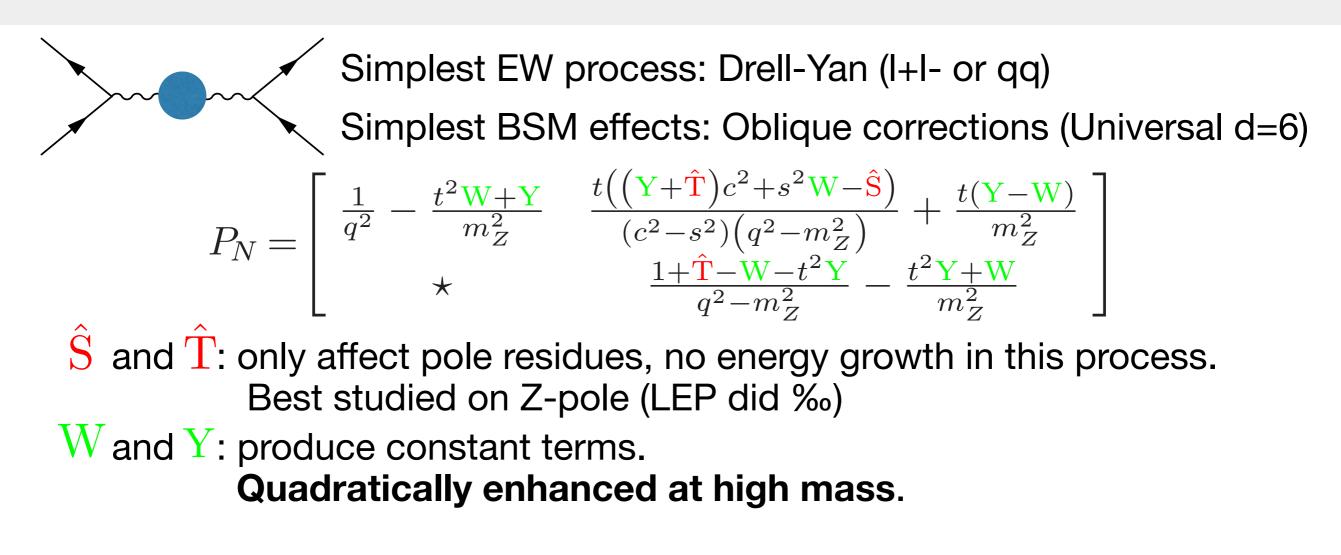




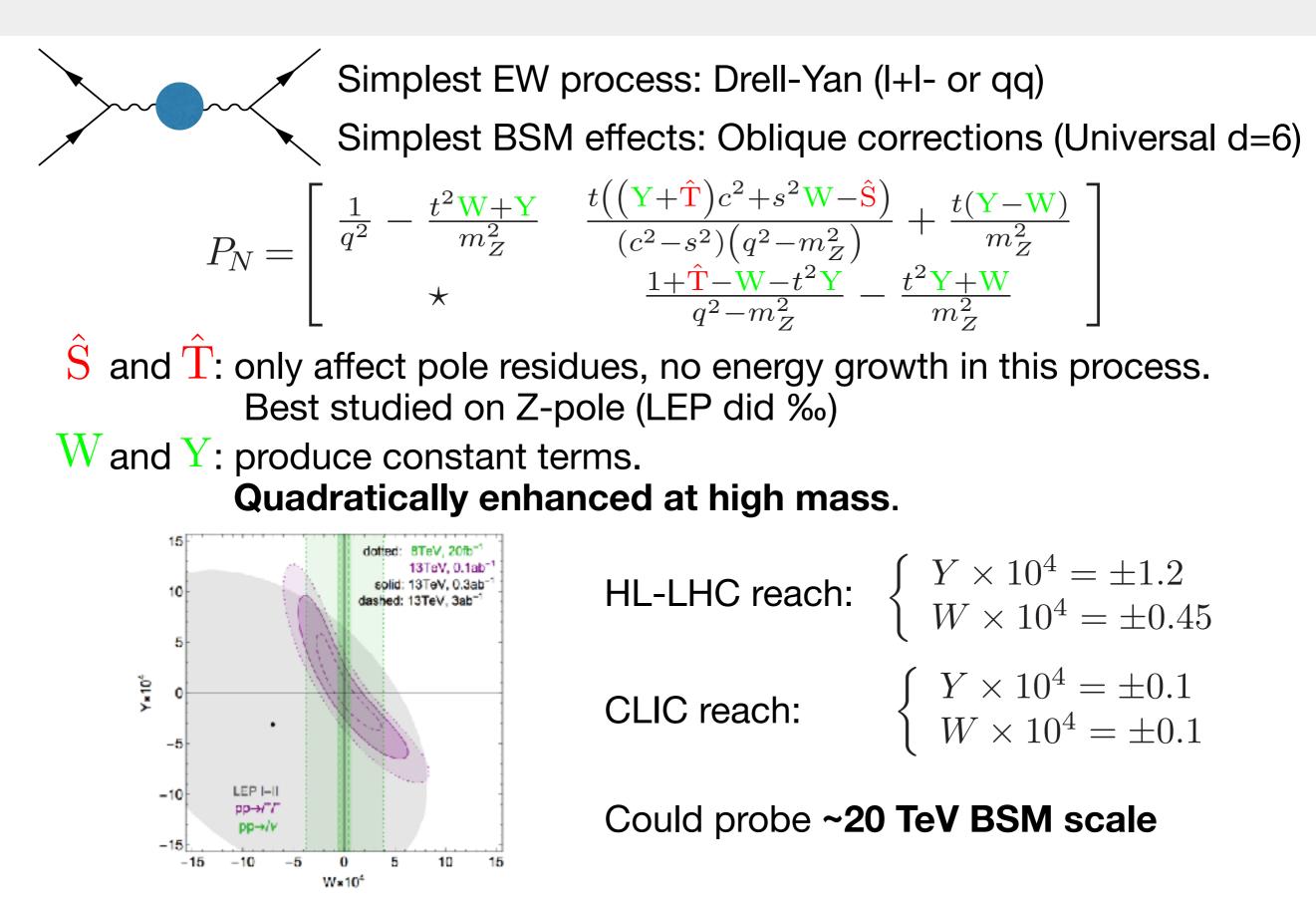




High-Energy Drell-Yan



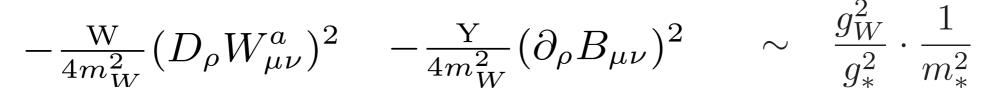
High-Energy Drell-Yan



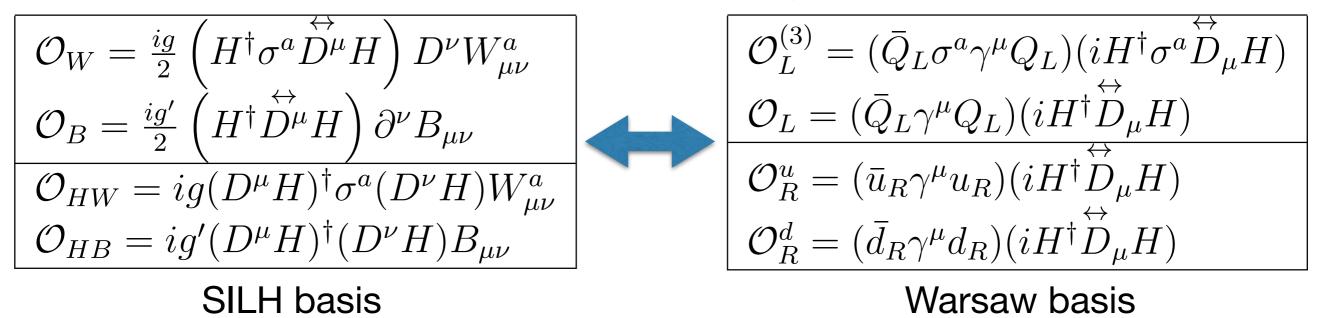
W/Y limits **easily evaded** (e.g., by strongly-coupled SILH):

$$-\frac{W}{4m_W^2} (D_\rho W^a_{\mu\nu})^2 - \frac{Y}{4m_W^2} (\partial_\rho B_{\mu\nu})^2 \sim \frac{g_W^2}{g_*^2} \cdot \frac{1}{m_*^2}$$

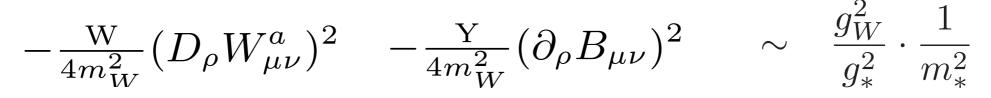
W/Y limits easily evaded (e.g., by strongly-coupled SILH):



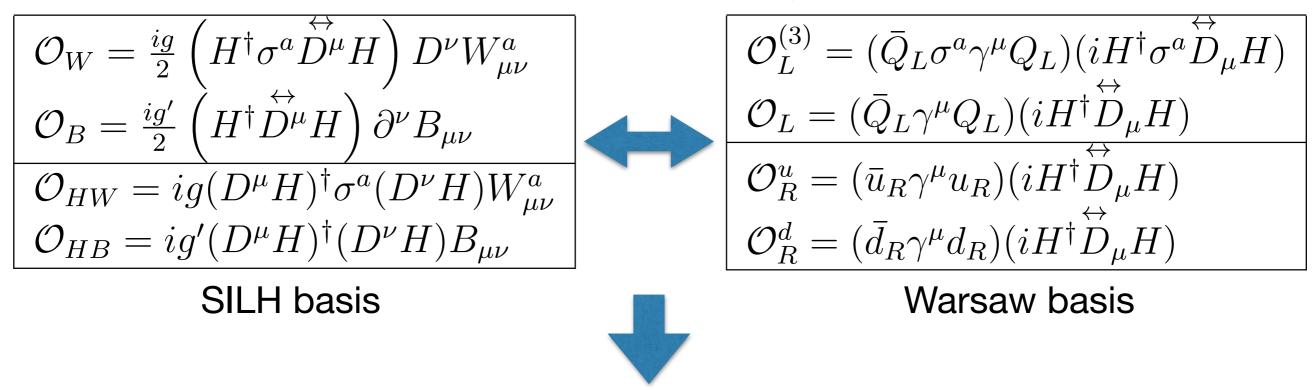
Some un-suppressed Universal operators: $\sim 1/m_*^2$ (SILH-basis coefficient)



W/Y limits easily evaded (e.g., by strongly-coupled SILH):



Some un-suppressed Universal operators: $\sim 1/m_*^2$ (SILH-basis coefficient)



Growing-with-energy longitudinal diboson and boson plus Higgs prod.

Three growing-with-energy effects (operators).[Franceschini, Panico, Pomarol, Riva, AW]

Amplitude	High-energy primaries	Deviations from SM couplings
$\overline{\bar{u}_L d_L} \to W_L Z_L, W_L h$	$\sqrt{2}a_q^{(3)}$	$\sqrt{2} \frac{g^2 \Lambda^2}{4m_W^2} \left[c_{\theta_W} (\delta g_{uL}^Z - \delta g_{dL}^Z) / g - c_{\theta_W}^2 \delta g_1^Z \right]$
$\bar{u}_L u_L \to W_L W_L$	$a_q^{(1)} + a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_L t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{u_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{dL}^Z} / g \right]$
$\bar{d}_L d_L \to Z_L h$		
$\bar{d}_L d_L \to W_L W_L$	$a_q^{(1)} - a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_L t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{d_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{uL}^Z} / g \right]$
$\bar{u}_L u_L \to Z_L h$		
$\bar{f}_R f_R \to W_L W_L, Z_L h$	a_f	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_{f_R} t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{f_R} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{fR}^Z} / g \right]$

Two of which independent (and same for q and I) for Universal theories

HL-LHC has some sensitivity to one of them:

$$a_q^{(3)} \sim \pm 5 \times 10^{-2} \text{TeV}^{-2}$$

Three growing-with-energy effects (operators).[Franceschini, Panico, Pomarol, Riva, AW]

Amplitude	High-energy primaries	Deviations from SM couplings
$\bar{u}_L d_L \to W_L Z_L, W_L h$	$\sqrt{2}a_q^{(3)}$	$\sqrt{2} \frac{g^2 \Lambda^2}{4m_W^2} \left[c_{\theta_W} (\delta g_{uL}^Z - \delta g_{dL}^Z) / g - c_{\theta_W}^2 \delta g_1^Z \right]$
$\bar{u}_L u_L \to W_L W_L$	$a_q^{(1)} + a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_L t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{u_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{dL}^Z}/g \right]$
$ \bar{d}_L d_L \to Z_L h$		
 $ \bar{d}_L d_L \to W_L W_L$	$a_q^{(1)} - a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_L t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{d_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{uL}^Z} / g \right]$
$\bar{u}_L u_L \to Z_L h$		
 $-\bar{f}_R f_R \to W_L W_L, Z_L h$	a_f	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_{f_R} t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{f_R} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{fR}^Z} / g \right]$

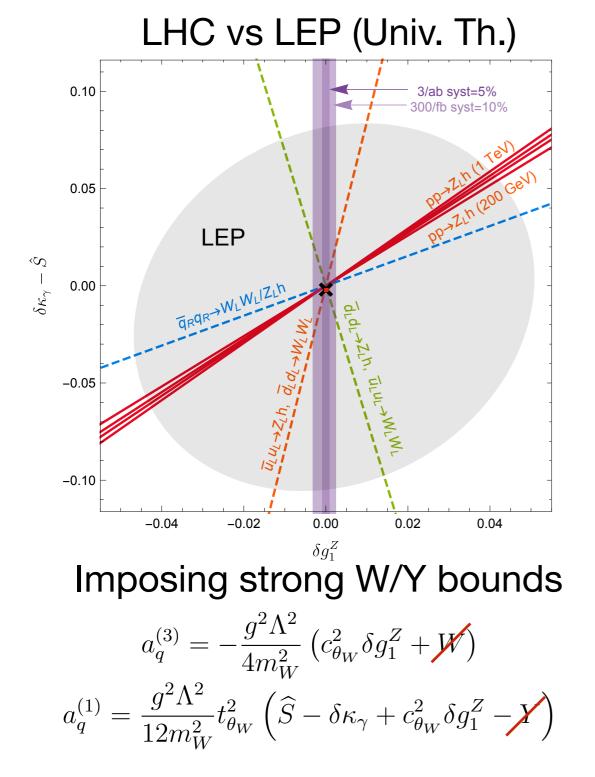
Two of which independent (and same for q and I) for Universal theories

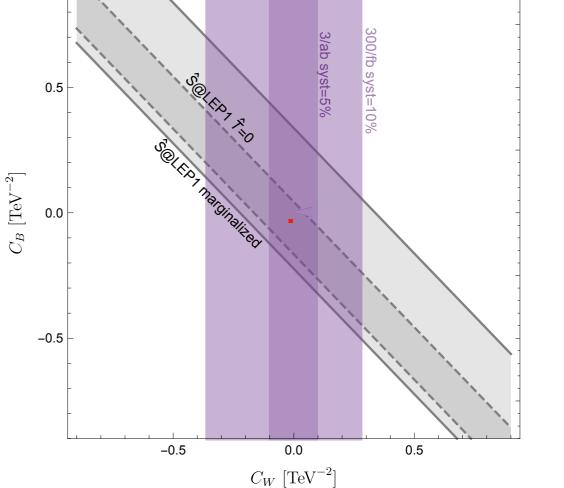
HL-LHC has some sensitivity to one of them:

CLIC with polarised beams sensitive to all of them:

$$a \sim \pm 3 \times 10^{-2} \text{TeV}^{-2}$$
[from Ellis, Roloff, Sanz, You, 2017]

BSM Implications: [CLIC is red point in the middle of the plots]

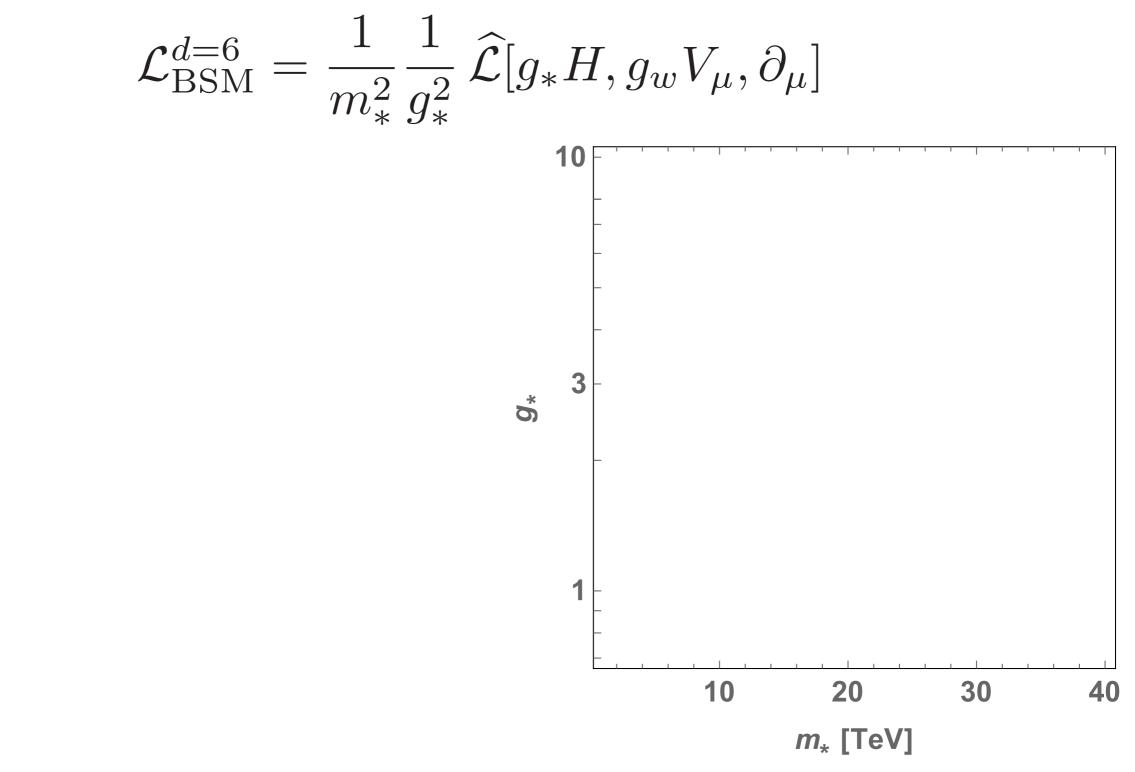




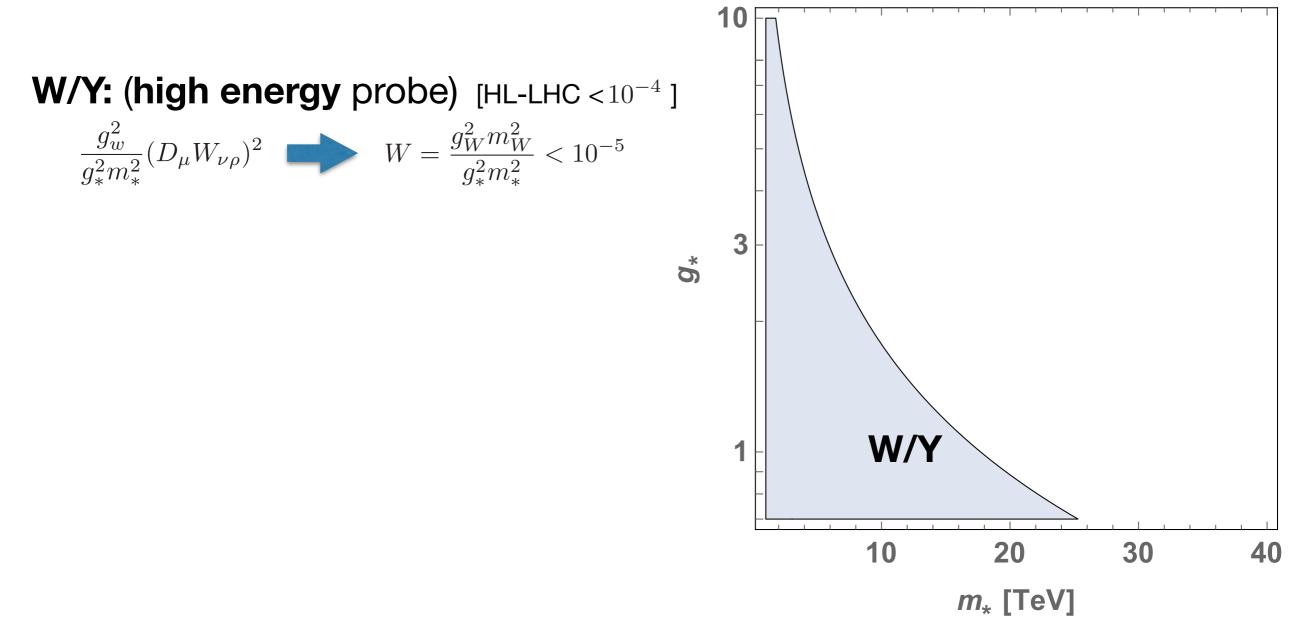
LHC vs LEP (Composite Higgs)

Power-counting + loop suppression

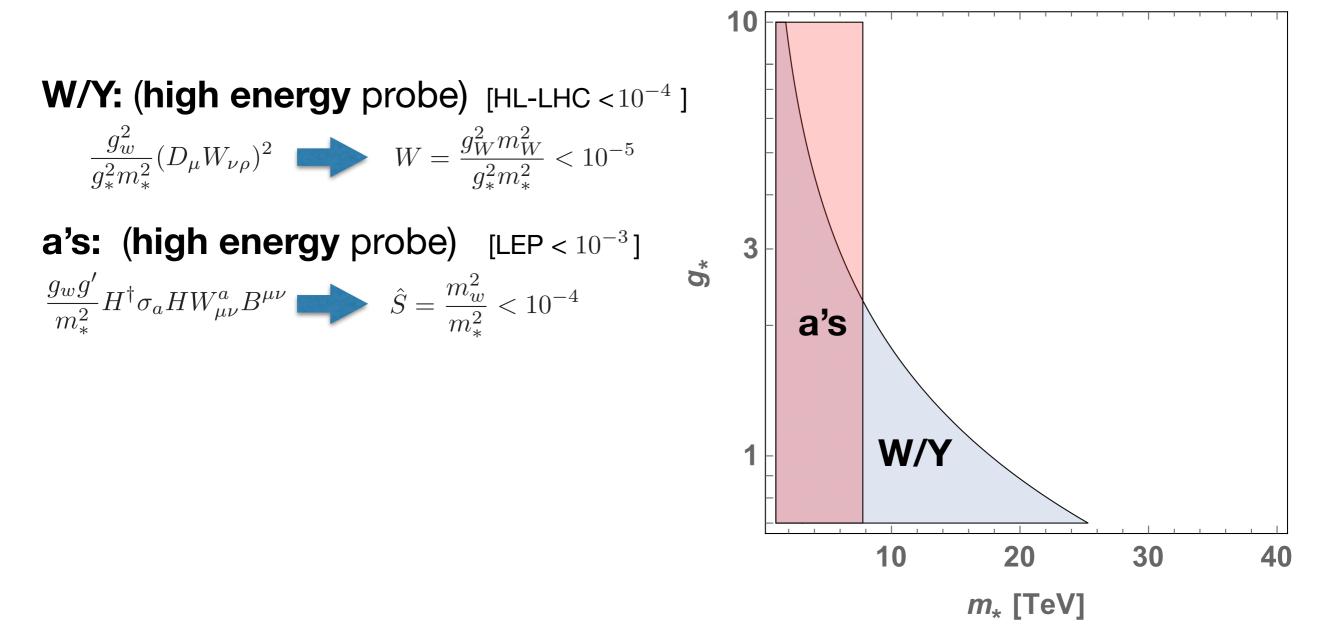
$$a_q^{(3)} = \frac{g^2}{4} (c_W + c_{HW} - c_{ZW})$$
$$\widehat{S} = (c_W + c_B) \frac{m_W^2}{\Lambda^2}$$



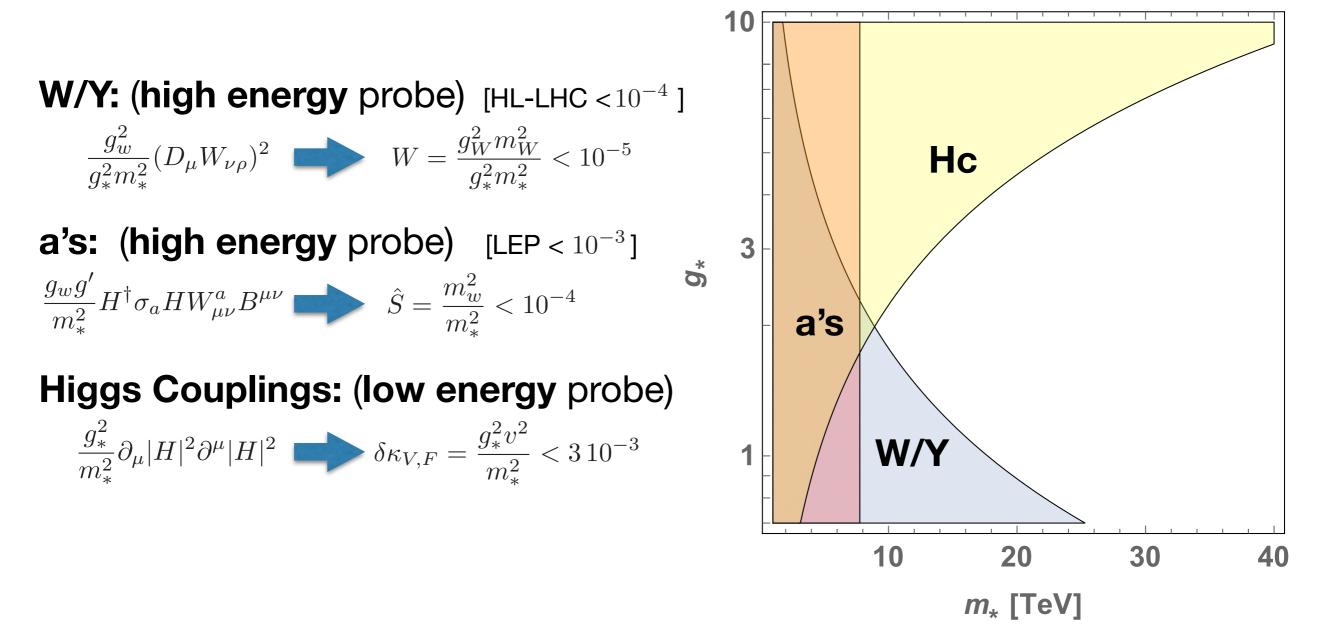
$$\mathcal{L}_{\rm BSM}^{d=6} = \frac{1}{m_*^2} \frac{1}{g_*^2} \,\widehat{\mathcal{L}}[g_*H, g_w V_\mu, \partial_\mu]$$



$$\mathcal{L}_{\text{BSM}}^{d=6} = \frac{1}{m_*^2} \frac{1}{g_*^2} \,\widehat{\mathcal{L}}[g_*H, g_w V_\mu, \partial_\mu]$$



$$\mathcal{L}_{\text{BSM}}^{d=6} = \frac{1}{m_*^2} \frac{1}{g_*^2} \,\widehat{\mathcal{L}}[g_*H, g_w V_\mu, \partial_\mu]$$



High-Energy Tops

Growing-with-Energy in ee->tt: [Durieux, Perelló, Vos, C.Zhang]		
$Q_{\varphi t} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\overline{t} \gamma^{\mu} t)$	quadratic growth	
$\mathcal{N}_{tB} = (\bar{t}\gamma^{\mu}t)(\bar{e}\gamma_{\mu}e + \frac{1}{2}\bar{l}\gamma_{\mu}l)$ $Q_{t\varphi} = (\varphi^{\dagger}\varphi)(\bar{q}t\widetilde{\varphi})$	linear growth (and diff. top decay dist needed)	
$Q_{tB} = (\overline{q}\sigma^{\mu\nu}t)\widetilde{\varphi}B_{\mu\nu}$ $Q_{\varphi q}^{(1)} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{q}\gamma^{\mu}q)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$Q_{\varphi q}^{(3)} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\overline{q} \tau^{I} \gamma^{\mu} q)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$Q_{tW} = (\overline{q}\sigma^{\mu\nu}t)\tau^{I}\widetilde{\varphi}W^{I}_{\mu\nu}$ $\mathcal{N}_{qB} = (\overline{q}\gamma^{\mu}q)(\overline{e}\gamma_{\mu}e + \frac{1}{2}\overline{l}\gamma_{\mu}l)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\mathcal{N}_{qW} = (\overline{q}\tau^I \gamma^\mu q) (\overline{l}\tau^I \gamma_\mu l)$		

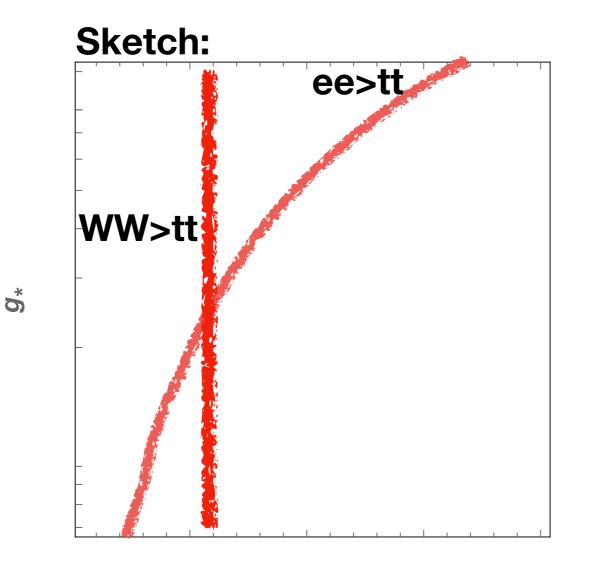
High-Energy Tops

Growing-with-Energy in **WW->tt**: [Grojean, You, AW, Z.Zhang] quadratic growth $Q_{\varphi t} = (\varphi^{\dagger} i D_{\mu} \varphi) (\bar{t} \gamma^{\mu} t)$ $\mathcal{N}_{tB} = (\bar{t}\gamma^{\mu}t)(\bar{e}\gamma_{\mu}e + \frac{1}{2}\bar{l}\gamma_{\mu}l)$ linear growth (and diff. top decay dist needed) $Q_{t\varphi} = (\varphi^{\dagger}\varphi)(\overline{q} t \,\widetilde{\varphi})$ **H-E probe of y**_t? (no result yet) $Q_{tB} = (\overline{q}\sigma^{\mu\nu}t)\widetilde{\varphi}B_{\mu\nu}$ 95% CL limits (3TeV CLIC, 3ab⁻¹, sys. err. 0, 3%) $Q_{\varphi q}^{(1)} = (\varphi^{\dagger} i D_{\mu} \varphi) (\overline{q} \gamma^{\mu} q)$ 0.100 PRELIMINARY $Q^{(3)}_{\varphi q} = (\varphi^{\dagger} i D^{I}_{\mu} \varphi) (\overline{q} \, \tau^{I} \gamma^{\mu} q)$ 0.010 \blacksquare $A_{co} > 0$ (no tt bkg) $Q_{tW} = (\overline{q}\sigma^{\mu\nu}t)\tau^{I}\widetilde{\varphi}W^{I}_{\mu\nu}$ $A_{co} > 0.1$ (no tt bkg) 0.001 $A_{co} > 0.1$ 0.001 $\blacksquare A_{co} > 0.15$ (no tt bkg) $\mathcal{N}_{qB} = (\overline{q}\gamma^{\mu}q)(\overline{e}\gamma_{\mu}e + \frac{1}{2}l\gamma_{\mu}l)$ $A_{co} > 0.15$ 0.010 $\mathcal{N}_{qW} = (\overline{q}\tau^I \gamma^\mu q) (\overline{l}\tau^I \gamma_\mu l)$ 0.100 $c_{\phi q}^{(1)}$ $c_{\phi q}^{(3)}$ C_{Φt} **C**tW

Top-philic EFT

Assuming composite t_R and H, elementary t_L and gauge

$$\mathcal{L}_{BSM}^{d=6} = \frac{1}{m_*^2} \frac{1}{g_*^2} \widehat{\mathcal{L}}[g_* t_R, y_t q_L, g_* H, g_w V_\mu, \partial_\mu]$$



More Maps

- **High Energy FCNC:** [ee > $\tau \mu$, ee > t q, ...] can compete with flavour phys. and/or exotic top dec?
- Light quark Yukawa determination: assessing BSM impact

- - -

- **EW-Charged Particles:** [Higgsino/EW-ikno, Minimal DM] Opportunity: **Millicharged Minimal DM at 1.5 TeV**
- **Exploring Holes in SUSY parameter space.**
- Extra Singlets Production: [for EWBG? related to H³?]

Summary

- Indirect BSM probes of heavy new physics through growing-with-energy effects, exploring the Energy and Accuracy Frontier, are very effective at CLIC.
- Several groups are further exploring CLIC potential in this direction, and assessing BSM implications of the program.
- This adds to, and **complements**, well-studied L-E probes
- Direct search program also to be updated with new ideas, in reaction to LHC non-discovery.
- Discussing Yellow Report report summary by this year.