

CLIC Workshop 2018 CERN, January 24, 2018

Felix Sefkow **DESY**

High granularity for LC and LHC

Particle Flow and pile-up

CALICE - technologies and validation

State of the art and on-going work

The HGCAL upgrade of the CMS endcap calorimeter

New challenges

Outlook

With a personal bias to SiPM-on-tile technology

Detector Requirements for LC and LHC

Accelerator environment.

Compared to LHC, LC radiation tolerance and bandwidth requirements are benign

Precision requirements are more demanding for LC:

2x for jet energies, 10x for track momenta, 5-10x for material budgets,
 2x for strip and pixel dimensions

At LC, bunch train structure allows power cycled operation (~1%)

• simplifies powering and cooling: thinner trackers, denser calorimeters

Backgrounds from beamstrahlung and hadronic 2-photon interactions

- more relevant for CLIC, higher E and smaller beam spot (5x1nm²)
- somewhat higher emphasis on fine granularity and precise timing

Shifted focus and unwanted long time span led to development of new detector concepts up to TDR readiness level

- Imaging calorimeters
- Other examples: MAPS / ALICE ITS,

From LC...

Particle Flow Paradigm

Tackle the jet energy challenge.

In e+e- physics every event counts - exclusive reconstruction possible

Heavy objects - multi-jet final states

W / Z mass splitting dictates required jet energy resolution of 3-4%

Cannot be archived with classical calorimeters (e.g. ZEUS: 6%)

Reconstruct each particle individually and use optimal detector

60% charged, 20% photons, 10% neutral hadrons

Requires fine 3D segmentation of and sophisticated software

ECAL few 10 mm², HCAL 1-10 cm² - millions of channels

Today all linear collider detector concepts follow particle flow concept

Particle Flow Paradigm

Tackle the jet energy challenge.

High Granularity and Pile-up

Particle flow with harsher backgrounds.

Studied intensively for CLIC: backgrounds from $\gamma\gamma \rightarrow$ hadrons and short BX 0.5 ns

- Overlay γγ events from 60 BX, take sub-detector specific integration times, multi-hit capability and timestamping accuracy into account
- Apply combination of topological, pt and timing cuts on cluster level (sub-ns accuracy)

High granularity essential for pile-up rejection capabilities

High Granularity and Pile-up

Particle flow with harsher backgrounds.

Studied intensively for CLIC: backgrounds from $\gamma\gamma \rightarrow$ hadrons and short BX 0.5 ns

- Overlay yy events from 60 BX, take sub-detector specific integration times, multi-hit capability and timestamping accuracy into account
- Apply combination of topological, pt and timing cuts on cluster level (sub-ns accuracy)

High granularity essential for pile-up rejection capabilities

Technologies for Highly Granular Calorimeters

Because we can.

Large area silicon arrays

silicon calorimetry grows out of the domain of small plug devices

New segmented gas amplification structures (RPC, GEM, μ Ms) Silicon photomultipliers on scintillator tiles or strips

3x3cm² tile

small, B-insensitive, cheap, robust

CALICE Test Beam Experiments

Large prototypes, complex systems.

SiW ECAL

RPC DHCAL, Fe & W

ScintW ECAL

RPC SDHCAL, Fe

Scint AHCAL, Fe & W

- plus tests with small numbers of layers:
- ECAL, AHCAL with integrated electronics
- Micromegas and GEMs

CALICE Test Beam Experiments

Large prototypes, complex systems.

Proof-of-Principle

Validation of performances, simulations and algorithms.

- 38 layers, 7608 channels first large-scale application of SiPMs
 - 6 years of data taking at DESY, CERN, Fermilab
- 12 journal papers (from SiPM-on-tile phototype alone)
 - resolution for electrons and hadrons, shower shapes and shower separation, different particle types and absorber materials,...
- All CALICE results
 - https://twiki.cern.ch/twiki/bin/view/CALICE/CalicePapers

 $\sigma/E = 45.1\%/\sqrt{E} \oplus 1.7\% \oplus 0.18/E$

software compensation now implemented in Particle Flow

Eur. Phys. J. C77 (2017) 698

Rev.Mod.Phys. 88 (2016) 015003

The Next Step: Scalability

Technological prototypes.

- 1000's of channels per m²
- 1000's of m²
- must embed electronics and go digital as early as possible
- Integrate SiPMs in read-out board, too

Automated Production and Quality Assurance

Establishing the concept.

In addition test infrastructures:

- Multi-channel SiPM tests
- Automated ASIC tests
- PCB tests using LEDs
- Coscmic tests after tile assembly

New Prototypes

'New beam tests

Small stacks tested with electrons

- B field compatibility
- Active temperature compensation

Big HCAL prototype under construction for beam in May + June

- 40 layers, 160 boards, 640 ASICs, 23'000 SiPMs
- Running at full speed readiness review in April

New Prototypes

'New beam tests

Small stacks tested with electrons

- B field compatibility
- Active temperature compensation

Big HCAL prototype under construction for beam in May + June

- 40 layers, 160 boards, 640 ASICs, 23'000 SiPMs
- Running at full speed readiness review in April

... to LHC

High Granularity Endcap Calorimeter for CMS.

HL-LHC: 300 -> 3000 fb-1 to start end of 2026

- Emphasis moves to vector boson fusion initiated processes
- Narrow and merged jets, isolated objects
- Pile-up: 200 collisions per BX, keep thresholds
- Existing end-cap will be degraded at end of Run 2 (2023)

Technical proposal 2015

- Decision plastic scintillator for CE-H: Nov 2016
- Decision SiPM-on-tile Mar 2017

TDR submitted Nov 2017

- LHCC review Feb 2018
- EDR end 2020

Largely building on CALICE developments

High Granularity Endcap Calorimeter for CMS.

HL-LHC: 300 -> 3000 fb-1 to start end of 2026

- Emphasis moves to vector boson fusion initiated processes
- Narrow and merged jets, isolated objects
- Pile-up: 200 collisions per BX, keep thresholds
- Existing end-cap will be degraded at end of Run 2 (2023)

Technical proposal 2015

- Decision plastic scintillator for CE-H: Nov 2016
- Decision SiPM-on-tile Mar 2017

TDR submitted Nov 2017

- LHCC review Feb 2018
- EDR end 2020

Largely building on CALICE developments

High Granularity Endcap Calorimeter for CMS.

HL-LHC: 300 -> 3000 fb-1 to start end of 2026

- Emphasis moves to vector boson fusion initiated processes
- Narrow and merged jets, isolated objects
- Pile-up: 200 collisions per BX, keep thresholds
- Existing end-cap will be degraded at end of Run 2 (2023)

Technical proposal 2015

- Decision plastic scintillator for CE-H: Nov 2016
- Decision SiPM-on-tile Mar 2017

TDR submitted Nov 2017

- LHCC review Feb 2018
- EDR end 2020

Largely building on CALICE developments

High Granularity Endcap Calorimeter for CMS.

HL-LHC: 300 -> 3000 fb-1 to start end of 2026

- Emphasis moves to vector boson fusion initiated processes
- Narrow and merged jets, isolated objects
- Pile-up: 200 collisions per BX, keep thresholds
- Existing end-cap will be degraded at end of Run 2 (2023)

Technical proposal 2015

- Decision plastic scintillator for CE-H: Nov 2016
- Decision SiPM-on-tile Mar 2017

TDR submitted Nov 2017

- LHCC review Feb 2018
- EDR end 2020

Largely building on CALICE developments

CERN European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

CMS-TDR-17-007 27 Nov 2017

CMS

The Phase-2 Upgrade of the CMS Endcap Calorimeter
Technical Design Report

The Power of High Granularity at the LHC

VBH jets + H →γγ: 720 GeV jet, 175 GeV photon

The Power of High Granularity at the LHC

VBH jets + H →γγ: 720 GeV jet, 175 GeV photon

The Power of High Granularity at the LHC

VBH jets + H →γγ: 720 GeV jet, 175 GeV photon

HGCAL layout and key numbers

Driven by radiation levels

	CE-E	CE-H	
	Si	Si	Scintillator
Area (m ²)	368	215	487
Channels (k)	3916	1939	389
Si modules (Tileboards)	16 008	8868	(3960)
Partial modules	1008	1452	_
Weight (t)	23	205	
Si-only planes	28	8	
Mixed (Si+Scint) planes		16	

Cost: total xM, Scintillator-SiPM Tile Modules yMCHF

5641 Back side of Back flange from IP

Longitudinal structure

28 silicon, 8 silicon and 16 mixed silicon scintillator layers.

SiPM-on-Tile segmentation

Match radiation levels and trigger geometry

- Higher dose (<200 kRad) smaller tile area more signal
- Higher fluency (<5e14 n/cm²) larger SiPM area more S/N

Read-out electronics

Front-end based on CALICE developments

HGCROC based on SKIROC and SPIROC

- 1 GB/s data, 1GB/s trigger output
- ADC, TDC, ToA and ToT
- ToT not compatible with AC coupling
- Analoge input stage using current conveyor a la KLauS (Heidelberg)

First steps

Test SiPM read-out with CMS-style ASIC

M.Reinecke (DESY), S. Callier (OMEGA)

HGCAL active layers

Mixed cassettes

OUTER 10° SECTIONS reflector foil fine-pitch connector twinax cable higher profile stacking connector (4/8 diff. chns.) with adapter board SiPM copper cover plate for twinax-cable. UV LED in cutout of adapter board. **HGCAL** active layers with adapter not in scale **Mixed cassettes** 3.3 LV PCB + fiber space for silicon 3.0 1.6 Passive wing board Copper Cooling Plate **HGROC** light calibration system, GBT_SCA, regulator polyimide isolation (50µm) CENTER 10° SECTION reflector foil fine-pitch connector twinax cable higher profile stacking connector with adapter board (4/8 diff. chns.) UV LED copper cover plate for twinax-cable. in cutout of adapter board. with adapter in mm, not in scale 3.3 LV_PCB + fiber space for silicon 3.0 1.6 Passive wing board Active motherboard 1.6 Copper Cooling Plate light calibration system, Hexaboard Sensor Kapton sheet Cu/W Base plate tile sizes 2 cm - 5.5 cm DESY. Calorimetry from LC to LHC | Felix Sefkow | January 24, 2018

HGCAL tile-modules

The DESY part.

Tile-boards = HBUs

 only 6 different types (assuming we can cut them)

Tile-modules = tile-boards + scintillator

- individual tiles for larger sizes
- mega-tiles for smaller sizes

New technical challenges

- high-speed data transfer
 - 2x 1GB/s / ASIC
- Cooling of SiPMs through PCB
- Thermo-mechanical issues +- 40 °C
- Rad-hard components

Basic R&D:

scintillator and SiPM radiation tolerance

BH8x12 (10°) module

AHCAL prototype as Backing Hadron calorimeter

Common DAQ: EUDAQ

AHCAL prototype as Backing Hadron calorimeter

Common DAQ: EUDAQ

TDR Fig. 5.18

AHCAL prototype as Backing Hadron calorimeter

Common DAQ: EUDAQ

TDR Fig. 5.18

AHCAL prototype as Backing Hadron calorimeter

TDR Fig. 5.18

TDR Fig. 10.12

Summary

No conclusion.

CALICE SiPM-on-tile HCAL design largely adopted for HL-LHC upgrade of CMS endcap calorimeter.

• 20 x CALICE, 1/20 x CLICdet - and many new challenges

Exciting to connect LC and LHC expertise.

Breathtaking to progress to TDR, EDR, construction.

Rewarding for both sides - absolutely.