

ESU Documents: CLIC accelerator

Philip Burrows

John Adams Institute, Oxford University
and CERN

Two main supporting documents

CLIC Project implementation Plan 'PiP' (160pp):

Machine parameters, cost, power, site, staging, construction schedule, summary of main tech. issues, preparation phase summary

CLIC preparation-phase (2020-2025) plan (60pp):

- Critical parameters, status and next steps what is needed before project construction, strategy, risks + mitigation
- + executive summary joint accelerator + CLICdp
- + supporting documents in EDMS etc.
- NB: the official submission to ESU may be very short (15pp?)

PiP outline with responsibles

	A	В	С	D	E	
1	PiP					
2	Chapter	Section	Pages	Comments	Responsible	
3						
4	Intro		3		Steinar	
5				intro, context, recall CDR, describe document		
6	380 DB		30		Daniel	
7	4	Injectors	2		Steffen	
8	<u> </u>	DR	2		Yannis	
9		RTML	2		Andrea	
10		ML	3		Daniel	
11	<u> </u>	BDS	3		Rogelio (Edu)	
12		MDI	3		Lau	
13	<u> </u>	Post. Coll. and beam-dump	2	here, also technical study	Rogelio (Ryan&Lau)	
14	<u> </u>	Integrated studies	3	simulations, include operation/energy scanning, machine p	Daniel	
15		DB acc	2		Steffen (Roberto&Avn	ıi)
16	<u> </u>	DB recomb	2		Roberto (Andrea&Edu	1)
17		Beam transport	2		Andrea	
18		Decelerators	2		Daniel	
19		Dump lines	2		Andrea	
20	<u> </u>					
21	380 KL		7		Daniel	
22		Introduction and parameters	2		Daniel	
23	<u> </u>	Main linac design	3		Daniel	
24		Main Linac technical unit	2	Module and RF unit (Klystron, pc, RF)	Carlo	
25					5	ļ

PiP outline with responsibles

	Α	В	С	D	E	F
26	Higher energ	gies (technical description)	10		Daniel	
27		Introduction, and example paramete	2	"1.5 TeV included in 3 TeV" (1DB to 2 DBs)	Daniel	
28		upgrade from Klystron version	2		Daniel	
29		Impact on systems	2	ML, sources, DB, "no problem!"	Daniel	
30		Progress on 3 TeV BDS?	2	improvements on 3TeV design	Edu	
31		Energy upgrades with future techon	2		Erik	
32	Technologie	s	60	Hardware and technical studies	Nuria	
33		Sources and injectors	3	MB and DB	Steffen	
34		Magnets	3	including powering	Jeremie	
35		PETs and all acc. structures	3	refer to "performance" chapt, both DB and K	Nuria (Steffen, Alexe	i, Igor)
36		Klystrons	3	L,X,DB,inj, incl new developments	Olivier (Steffen, Igor,	Gerry)
37		Modulators	3		Olivier (Davide, Gern	y)
38		Module	3	K and DB machine	Carlo	
39		Pulse compressors	3	both Injectors and Klystron machine	Igor	
40		Vacuum	3		Cedric	
41		Instrumentation	3		Thibaut	
42		Beam transfer	3		Mike	
43		Beam interception devices	3	collimators, photon absorbers DR	TBD	
44		MDI	3	technical studies	Lau	
45		Beamdumps	3	techncial studies (what about post collision line?)	TBD	
46		Controls, timing, feedback	3		Mick	
47		Machine prot	3	technical studies	Michael	
48		Alignment	3	include survey	Helene	
49		Stabilzation	3		Kurt	
50		Ground motion measurements	3	sensor development	Laurent	
51		Wigglers	3		Paolo	
52					4	

4

PiP outline with responsibles

	Α	В	С	D	E	
53	CEIS		20		John	
54		Civ. Eng	3		John	
55		Electicity supply	3		Davide	
56		CV	3		Mauro	
57		Transport and Installation	3		Ingo/Michael	
58		Safety systems	3	incl. enviroment and access	Simon	
59		Radiation studies	3		Markus	
60		Cryo	3	in case of SC solenoid, check	Dmitri	
61	Implementa	tion	10		Steinar	
62		Schedule and staging	3		Marzia	
63		Cost	3		Steinar	
64		Power	3		Alexej	
65		Key issues (studies not complete)	2	Isssues for next period, risks (pointing to other document)	Daniel (Steinar)	
66	Performance		20		Roberto	
67		Introduction	2	Overview, inlcude reference to SLC	Daniel (Roberto, Phil)	
68		Drive Beam	3	CTF3	Roberto	
69		BDS beam dynamics	3	ATF2, FFTB	Rogelio	
70		Main linac beam dynamics	3	FACET+ELETTRA	Andrea	
71		RF systems	3	Swiss FEL, X-boxes, Compact light,	Walter (Nuria, Gerry)	
72		DR	3	Light sources whatever	Yannis	
73		Availability studies	2	refer to other big projects?	Odei	
74		Other effects	2	magnetic fields, what else?	Edu, Daniel	
75	SUM		160			
76						

PiP procedure + timeline

Editorial team met December 6

Document outline + contributors identified

Technical aspects: latex template, pointers to CDR - M. Draper, M. Aicheler

Contributors' email list set up

Helpful instructions to contributors about to be sent

First draft of every section due April 14th

Review all sections at CLIC Project Meeting, April 24th

Final polished sections due August 31

- → editing, prepare executive summary with CLICdp
- → final input to ESU short document

Preparation phase 2020-25

60-70 p document

- Intro, motivation introduce TDR as goal
- Outline of programme
 - Cost, power drivers and overview of work on them (to identify priorities)
 - Technical areas and industrial network behind, describe documentation to be prepared
 - System-tests
 - Design effort and performance studies
 - Site, CE, infrastructure describe documentation to be prepared
 - Project Organisation and governance
- Identified key partners, common projects and related facilities/projects
- Budget estimate, personnel estimate (increase engineering) with CERN and partner contributions, list of suggested "co-operation plans"
- Expected results (TDR outline)

Work ongoing to prepare this, but team not in place, need before Easter

1/25/2018

Thanks in advance to all contributors!

This is a vital process for making the case for CLIC