Optimization of the CLIC Positron Source

Yanliang Han®2, Andrea Latina®, Daniel Schulte?, Lianliang Ma®?

1Shandong University

2CERN

Jan. 22nd, 2018

Thanks the help from C. Bayar & S. Doebert



Outline
Outline

© Introduction & Review
© Motivation

© Target

O AMD

© Traveling Wave Structure
@ Start-to-end Optimization

@ Work in Progress & Plan & Conclusion



Introduction & Review

© Introduction & Review



Introduction & Review
Introduction

Layout of CLIC at 3 TeV stage
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Table: Beam parameters at the entrance of pre-damping ring

Parameters Value
E [GeV] 2.86
N 6.6 x 10°

np 312
Atp[ns] 1

€x,y[um 7000
oz [mm 5.4
oe [%] 4.5
frev [Hz] 50




Introduction & Review

Introduction - The positron source sketch
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Figure: Schematic layout of the main beam injector complex



Introduction & Review
Review 3 TeV - CDR

Target parameters:
@ Primary electron energy: 5 GeV
o Crystal thickness: 1.4 mm (0.4x0)
o Distance: 2 m
@ Amorphous thickness: 10 mm (3xo)
@ The positron yield after AMD is 8.0
AMD - B(z) = 2
@ Bp=6T, x=5m"" L=20cm
@ The positron yield after AMD is 2.1

Pre-injector
@ Accelerating the positrons to 200 MeV
o First decelerating and then accelerating
@ Inside the 0.5 Tesla solenoid
@ The positron yield after pre-injector is 0.9

Injector Linac
@ Accelerating the positron to 2.86 GeV
@ A bunch compressor is needed before the injector
@ The positron yield after injector linac is 0.7 (effective: 0.39)
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Introduction & Review

Review - Update on transmission

From AMD to injector linac

OUR PREVIOUS STUDIES: INJECTOR LINAC

*CDR

“Positron yield (CDR): 0.70& /e~
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Positron yield, 0.97 e* /e, is increased by a factor of 2.5.
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* All positrons by 99 % are transported.

* All positrons are within 1% acceptance window of the pre-damping ring.

Bayar 7/
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Motivation
Motivation

Main Changes:

@ The positron yield before the pre-damping ring has been improved from
0.39 to 0.97*

Rationale: saving cost

@ Reduce the current of the primary electron bunch
@ Reduce the energy of the primary electrons bunch
e 3 GeV is considered.

How? - First, we need to improve the final positron yield as high as possible.
@ Start-to-end optimization

o 5 GeV
e 3 GeV

C. Bayar, NIMA 869 (2017) 56-62
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Target

Positron Generation Simulation - Channeling Process

There are two program to simulate the crystal channeling process
@ VMS by V. M. Strakhovenko (Budker-INP, Russia)
o Used for simulation in CLIC CDR
o Photon distributions with only 4 different electron energies are provided
e FOT by X. Artru ? (French National Centre for Scientific Research)
o The primary electron energy and crystal thickness can be scanned
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Energy distribution for photons Px distributions for photons

Discrepancy between two codes: 10% - 20%°

Comments from X. Artru:
@ The two codes are implemented rather different.

@ It is not simple to guess which is better.

2X. Artru, NIMB48 (1990) 278-282
30. Dadoun, Journal of Physics: Conference Series 357 (2012) 012024
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Target

Positron Generation Simulation

Procedure ‘ Positron yield for CDR case: 7.2 ‘

@ FOT is used to generate photons in crystal tungsten (coherent &
incoherent bremsstrahlung, channeling)

@ These photons are set as primary particles in Geant4.

© Standard EM process in Geant4 is simulated in crystal & amorphous
tungsten target.
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Target

Energy & Phase Space After Target
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Peak Energy Deposition Density

It is found experimentally that PEDD should be limited to 35J/g.
The PEDD for the CDR configuration is 1.14 GeV/cm®/e™ (30 J/g).

@ 5 GeV primary electron

o Positron yield increase from 0.39 — 0.97
e Only need 40.2% primary electron compared to CDR (380 GeV case, 52.6%)

@ 3 GeV primary electron

o Positron yield temporally is 0.44
o PEDD is 0.65 GeV/cm3/e™ - 57% of PEDD in CDR

o 380 GeV case - 22.3 J/g
@ 3 TeVcase-15.2 J/g

PEDD is not a limitation factor for CLIC positron source.
@ Based on electron bunch transverse radius 2.5 mm

@ We can consider to reduce the size
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O AMD
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AMD

AMD simulation

Bo ‘ Positron yield after AMD is 2.8 ‘

Ideal magnetic field on axis: B;(z,0) = Tres

© Bp=6T, 1 =55m"" Length = 20 cm

The simulation is done by RF-Track* (very fast)
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@ The parameters can be changed easily.

@ It is much easier to do the start-to-end optimization

“A. Latina, MOPRCO16, Proceedings of LINAC2016
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Traveling Wave

© Traveling Wave Structure
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Traveling Wave

Field Map - Need by RF-Track for tracking simulation

The field map for the %" traveling wave structure is calculated with CST 2017.
o Wave length A =0.15 m

o Traveling wave structure length: 1.5 m
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The standing wave solution from SUPERFISH is also used to construct the
traveling wave solution. These two methods are consistent with each other.



Traveling Wave

Decelerating Part - The first TW

Scan the phase
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Traveling Wave

Decelerating Part

Scan the gradient

Grad = 1123
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Traveling Wave
Decelerating Parts

‘ Positron yield is 1.03‘

@ phase = -70 degree
@ gradient = 9.0 MV/m
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Accelerating Parts - The following 10 TWs

\ Positron yield is 0.92\
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The previous simulation with PARMELA ® gives positron yield 0.97.
@ The new result 0.92 are not different a lot from the previous one
@ We can begin the start-to-end simulation

®C. Bayar, NIMA 869 (2017) 56-62



Start-To-End optimization

Primary Electron Bun:
o E=5GeV & 3 GeV, AE/E=10"3
e AP, /P=10""°

@ 0xy=25mm,o,=1mm
8%

Target:
o Crystal tungsten thickness: 0.5 — 3.0 mm
@ Amorphous tungsten thickness: 6 — 20 mm

@ Distance between two tungstens: 0.5 — 3 m

The AMD parameters is not optimised for now.

Traveling wave structure - Optimize for each target configuration.
@ Phases for the decelerating and accelerating structure

o Gradients for the decelerating and accelerating structure

Injector Linacs:
Er = E; + AE cos(2nwt), here t is the arrive time at the end of pre-injector



Start-to-end optimization - Software version

FOT - The random generators are to the C++ standard library version
o Gean4 - 4.10.04.b01

e GCC-7.21

octave - 4.2.1

RF-Track - up-to-date (2018-Jan-15th)

e ROOT - 6.12.04

Problem met when doing the optimization:

The GCC 6.X is unstable for FOT + Geant4.
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Start-to-end optimization results - not finised

5 GeV primary electron bunch
o Crystal target thickness: 1.8 mm
@ Amorphous target thickness: 15.5 mm
Distance: 1.08 m
Phase: -37 & 38 degree
o Gradient: 15.1 & 16.4 MV /m
@ Positron yield: 1.00

3 GeV primary electron bunch
o Crystal target thickness: 1.93 mm
@ Amorphous target thickness: 16.2 mm
o Distance: 1.07 m

Phase: -37 & 42 degree

Gradient: 14.5 & 15.7 MV/m

@ Positron yield: 0.48



@ Work in Progress & Plan & Conclusion
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Work in Progress & Plan

Work in Proress

@ The start-to-end optimization is still running - at least 2 weeks is needed.

Plan
@ Continue the Optimization of the two options: 3 GeV and 5 GeV
o Include the AMD parameters

o Parameters: By, 1 & Length
o Consider the tapered aperture along AMD.

o Consider more freedoms for the traveling wave structure
o Use PLACET to simulate the injector linac tracking

@ Compare for performance and cost
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Conclusion

@ The positron source start-to-end optimization environment is setup
successfully
o The program FOT is used to simulate the channeling process in crystal
tungsten.
o Geant4 is used to simulation the electromagnetic process in crystal &
amorphous tungsten target.
o AMD & traveling wave structure are simulation by RF-Track with proper
field-map.
o The injector linac is considered by simple calculation.
@ The positron yield (NOT BEST) is determined as:

e 5 GeV - 1.00
o 3 GeV-0.48

@ More freedoms will be considered in order to get better results



Thank you!
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Difference between FOT & VMS

@ coherent bremsstrahlung & channeling

o FOT: Baier-Katkov formula - include non-uniformity field
o VMS: uniform field approximation.

@ incoherent bremsstrahlung
o FOT: included in Baier-Katkov formula
o VMS: calculated separately
o ete™ pair production
o FOT: Not included, should be simulated in Geant4
o VMS: Coherent effects is considered when pair is produced in VMS
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