

Main Linac Optimisation at 380 GeV and 350 GeV

N. Blaskovic

Acknowledgements: D. Schulte

Contents

- CLIC staging: 380 GeV up to 3 TeV
- Energy spread minimisation at 350 GeV

CLIC staging

CLIC staging

N. Blaskovic

CLIC staging

- Literature:
 - 'Updated baseline for a staged Compact Linear Collider' (CERN-2016-004)
 - 'CLIC Rebaselining at 380 GeV and Staging Considerations', D. Schulte, LCWS 2017

N. Blaskovic

Energy stages Stage \sqrt{s} (GeV) \mathscr{L}_{int} (fb⁻¹) HZ, WW, top 500 380 1 350 100 tt threshold scan 2 1500 1500 ttH 3 H self-coupling, BSM? 3000 3000

Luminosity ramp-up

3 TeV design

N. Blaskovic

380 GeV design

N. Blaskovic

Accelerator parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3	
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000	
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50	
Number of bunches per train	n_b		352	312	312	
Bunch separation	Δt	ns	0.5	0.5	0.5	
Pulse length	$ au_{ m RF}$	ns	244	244	244	
Accelerating gradient	G	MV/m	72	72/100	72/100	$\int FIRST: 72 WV/M$
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9	
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2	
Main tunnel length		km	11.4	29.0	50.1	
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7	- 'bacolino' voluce
Bunch length	σ_{z}	μm	70	44	44	- Daselline values
IP beam size	σ_x / σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$	1 nm at 3 TeV
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	920/20	660/20	660/20	
Normalised emittance (at IP)	ϵ_x/ϵ_y	nm	950/30			
Estimated power consumption	$P_{\rm wall}$	MW	252	364	589	

N. Blaskovic

Upgrade strategy

 For upgrade, move 72 MV/m accelerating structures to start of linac to preserve structure & quad lengths at low energies

Cost optimisation

 Cost increase relative to minimum cost for 3 TeV design with 100 MV/m gradient

To minimise cost, require RF pulse length of 244 ns. This sets drive beam pulse length to decelerator and, thus, also sets decelerator length (common for all stages)

Klystron-based alternative

- Replace drive beam for 380 GeV stage
- Faster implementation: drive beam not needed for accelerator structure testing
- Upgrade to 3 TeV with drive beam

Baseline structure choice

DB	Drive beam		Opti	misec	l at 3	80 G	əV	
K	Klystrons		Opti	nisec	l at 3	80 G	əV	
DB244	Drive beam		Upgradable to 3 TeV					
K244	Klystrons	Up	grada	able v	vith [DB to	3 TeV	
								· 'baseline' design
Parameter		Symbol	Unit	DB	K	DB244	K244	
Frequency		f	GHz	12	12	12	12	
Acceleration g	radient	G	MV/m	72.5	75	72	79	
RF phase adva	nce per cell	$\Delta \phi$	0	120	120	120	120	
Number of cel	ls	$N_{\rm c}$		36	28	33	26	
First iris radius	s / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15	
Last iris radius	/ RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044	
First iris thickr	ness / cell length	d_1/L_c		0.297	0.25	0.303	0.28	
Last iris thickn	ess / cell length	d_2/L_c		0.11	0.134	0.172	0.17	
Number of par	ticles per bunch	Ν	10^{9}	3.98	3.87	5.2	4.88	
Number of bur	nches per train	n _b		454	485	352	366	ungradable
Pulse length		$ au_{ m RF}$	ns	321	325	244	244	
Peak input pov	ver into the structure	$P_{\rm in}$	MW	50.9	42.5	59.5	54.3	to 3 leV
Cost difference	e (w. drive beam)	$\Delta C_{\rm w, DB}$	MCHF	-50	(20)	0	(20)	
Cost difference	e (w. klystrons)	$\Delta C_{\rm w. K}$	MCHF	(120)	50	(330)	240	

N. Blaskovic

Value estimate

Drive-beam baseline design at 380 GeV

	Value [MCHF of December 2010]
Main beam production	1245
Drive beam production	974
Two-beam accelerators	2038
Interaction region	132
Civil engineering & services	2112
Accelerator control & operational infrastructure	216
Total	6690

Energy spread minimisation at 350 GeV

Energy spread minimisation

- Dedicated 350 GeV operation will perform energy scan around tt threshold
- Requires excellent energy resolution by minimising bunch energy spread
- Energy spread develops in the bunch from
 - RF time-varying profile
 - Bunch wakefield effect

RF contribution

Energy profile with a bunch charge of 52 x 10^8 and a bunch length of 70 um for mean bunch phases from 0 to 30 deg

N. Blaskovic

Wakefield contribution

Energy profile with a bunch charge of 52 x 10^8 and a bunch length of 70 um for mean bunch phases from 0 to 30 deg

N. Blaskovic

Combined contribution

Energy profile with a bunch charge of 52 x 10^8 and a bunch length of 70 um for mean bunch phases from 0 to 30 deg

N. Blaskovic

CLIC Workshop 2018

Energy spread

- Energy spread optimised at 0.35% (std) at the end of the linac by D. Schulte et al. for baseline 380 GeV design:
 - 5.2 x 10⁹ particles/bunch
 - 70 um bunch length
- Optimum RF phase:
 - 12° in first 3 linac sectors
 - 18.1° in last linac sector

Energy spread minimisation

- The energy spread has been studied further by varying:
 - Number of particles/bunch
 - Bunch length
- RF gradient of 380 GeV stage re-adjusted for operation at 350 GeV

Energy spread

Comparison

Comparison

Emittance growth

- Small energy spread along the linac leads to poorer beam stability and a larger beam emittance
- Zero incoming energy spread gives worst case scenario
- Mitigate emittance growth by introducing energy spread in early stages of linac (with offset RF phase) and after taking it out

Mitigating emittance growth

RF phase scanning

- RF phase combinations scanned to find lowest energy spread and emittance at end of linac
- RF phases of all 4 linac sectors scanned together from 0° to 30°
- For each phase, sequentially increase:
 - Last sector's phase up to 30°
 - Preceding sectors' phases up to 30°

RF phase scanning

Optimum bunch length & charge

 Scan RF phase combinations over a range of bunch lengths and charges to find

	380 GeV	Target
Emittance	18 nm	< 14 nm
Energy spread	0.35%	< 0.20%

whilst preserving an acceptable bunch charge for good luminosity

N. Blaskovic

N. Blaskovic

Conclusions

- Energy spread (std) can be reduced from 0.35% (for 380 GeV design) to <0.20% for tt threshold scan at 350 GeV with:
 - Bunch charge: 90% of nominal
 - Bunch length: 110% of nominal
- Requires RF phase ~6° in first half of linac and ~30° in the second half

Thank you for your attention!

380 GeV baseline design

