

CLIC Drive Beam Injector study LEETCHI electron source

Kévin Pepitone, Bruno Cassany, Steffen Doebert, Jacques Gardelle

Kevin PEPITONE, BE-RF

Electron beam parameters

CLIC drive beam electron source specifications

Parameters	Baseline
Beam energy	140 keV
Beam current	Up to 7 A
Pulse length	140 µs
Emittance (RMS)	< 20 mm mrad
Repetition rate	50 Hz
Beam power	Up to 6.9 kW
Shot to shot charge variation	0.1 %
Flat top charge variation	0.1 % after correction

Low Energy Electrons from a Thermionic Cathode at High Intensity

162/R-008 @ CERN

Signa for the pressing the rate of the second secon

0.85 m for expreminences 4 with the beam dump

- Magnetic field from 120 to 240 G
- d_{AK} by changing the spacer
- Cathodes: 2 cm² or 3 cm² area
- V_{HV} from 0 to 140 kV

330 µm SiC

ehacoded ibe and derp) ifferent conditions:

Cathode grid effects

ERI

Cathode grid effects

Pulse to pulse current stability

1000 shots @ 50 Hz, extracted from 180 000 shots (1 hour @ 50 Hz) V_{HV} = 140 kV ; t = 8 µs ; I_B = 4.5 A

Measured pulse to pulse stability on beam current: 0.3-0.4 %

Allan Standard Deviation = A metric for stability = Two-sample Standard Deviation taken over variable interval of time or variable interval of pulses

Pulse to pulse current stability

300 shots @ 6 Hz, extracted from 1800 shots (5 minutes @ 6 Hz) V_{HV} = 140 kV ; t = 140 µs ; I_B = 4.5 A

Capacitor discharge during the pulse, Marx-modulator under development

November 2016

Marx-Generator

1 shot V_{HV} = 120 kV ; t = 140 µs ; I_B = 2.5 A

Good stability

November 2017

Preliminary

results

RMS radius with OTR

CLC

Beam stability with OTR

30 shots @ 1Hz, $t = 3 \mu s$, $I_{beam} = 4.5 A$, $I_{solenoid} = 5.5 A$, E = 140 keV

 r_{rms} = 9.85 ± 0.022 mm beam stability = 0.2%

1 pixel = 0.12 mm

CST simulations

Comparison between experimental results and simulations

Comparison between experimental results and simulations @ 0.5A

CERN

Emittance estimation

 $\langle \varepsilon_r \rangle = 2.0 \sqrt{\langle r^2 \rangle [\langle p_r/p_z \rangle^2 + \langle p_\theta/p_z \rangle^2] - \langle rp_r/p_z \rangle^2 - \langle rp_\theta/p_z \rangle^2}$

Solid State Marx Modulator

Previous results (obtained at CESTA)

- Design & Choice of components :
 - 1700 V IGBT, Capacitors, Diodes, Power supply
 - Hybrid auxiliary power supply
- Tests with 30 stages (6 cards)

Details

Mechanical integration

• Mechanical integration is ongoing.

SUPPORTING STRUCTURE WITH 7 CARDS

Mechanical integration & test

Very first result 70 stages, 70% charging voltage (880 V) on 11.8 k Ω load

-10k

-40k

-50k

-60k

256.00µ

192.00µ

Results: Pulse to pulse variation

Results: Flatness

RC corrector

1E-2-

• RC in parallel with the load in order to absorb ~1% of the energy during the first half of the pulse.

Latest Results (Nov 2017)

Marx-Modulator connected to the gun producing beam at nominal parameters

- Kevin and Bruno left us, new fellow start in February, CEA collaboration continues
- Continue measurements, mainly beam stability and emittance
- Test Marx-Modulator to full average power
- Found interesting science and applications around our project
 - Emittance due to the grid
 - Terahertz generation, Smith-Purcell
- Intends to operate LEETCHI at least until 2019

Thank you for your attention

