

CLIC Handling Engineering

MICHAL CZECH – INGO RUEHL EN-HE

cuc

Outline

There are two leading studies on CLIC tunnel design:

- Drive Beam (DB) model,
- Klystron model.

For each of them, following issues will be presented and discussed:

- Inventory data tables
- Surface transport & handling
- Shaft
- Underground handling
- What is next?
- Questions

Inventory input data tables – DB & Klystron

- Based on the general input on the characteristics and number of the equipment it is possible to define transport needs in underground and surface facilities.
- The tables were created and gradually updated in order to organize all the equipment, their location, their characteristics and quantity.

Surface transport – Drive Beam

- Surface transport in between the buildings carried out using the fleet of road transport vehicles (feasibility studies to be done).
- Surface handling within buildings carried out by: mobile cranes, overhead cranes, forklifts, industrial lift trucks, trucks and trailers, pallet trucks, etc.

cclc

Surface transport – Klystron

Main difference for surface buildings:

▶ No Drive Beam Complex (2,5 km surface building)

ccic

Surface handling – EOT cranes

Building Type:

Detector Assembly

- Cooling Tower and Pump Station
- Cooling and Ventilation
- Cryogenic Warm compressor
- Cryogenic Surface Cold Box
- Workshop
- Central Area Machine Cooling Towers
- Shaft Access
- Drive Beam Injectors

Crane load capacity (tonnes)

2x80 (CMS approach) + strand jacks

3.2

20

20

10

5

20

5x5 for 380 GeV(the same or more for 3TeV)

Transfer: Surface -> Underground Shaft

- Access point: shafts every 5km 10 total, 2 during 380 GeV stage
- (+ shaft for the detector cavern)
- * Inclined tunnels only when shafts are not feasible (geographical or environmental reasons)

Shaft requirements:

- Evacuation
- Shaft maintenance (cables, pipes, etc.)
- Quick access for people and equipment

Transport means:

- ightarrow Lifts (exceptionally stairs)
- → Stairs/ tremie (crane maintenance platform)
- → Lifts/ tremie

Access shafts

Transfer Surface – Underground Shaft

Size of the shaft is defined by the biggest objects that will need to be transferred underground Key features:

- Two lifts for redundancy:
 - Dimensions Capacity: 3t,
 L=2500 mm x W=1500 mm x H=2500 mm,
 - Objects to transport:
 - Modules in DB Main tunnel,
- TREMIE
 - Dimensions L=7680 mm x W=2000 mm,
 - Biggest objects to transport:
 - Dipole (W:5t), Beam pipe (L~10m)

CDR Tunnel Cross section basic information:

TUNNEL CROSS-SECTION – Drive Beam

- Internal diameter: 5.6 m
- Transport Volume (mm): 2150 x 1200
- Width of the safe passage: 700 mm

In order to transport all modules fluently, dedicated vehicle was proposed (design by K. Kershaw)

CDR Tunnel Cross section basic information:

- Inner diameter: 10 m;
- Two section of the tunnel separated with a shielding wall (<u>study ongoing</u>);
- Two different transport needs (rails and hoists through the whole tunnel **or** classic transport volume with truck/trailer/forklift solution);

Estimate – Drive Beam total cost

Main differences/similarities (3 TeV and 380 GeV):

- Less maintenance, operation manpower, cranes, lifts, etc.,
- Same injection + experiment surface buildings,
- Same installation rate.

Klystron approach cost comparison:

- Saving on the lack of the Drive Beam Injectors surface buildings complex,
- Losing on the enlarged underground tunnel.

The cost of the Klystron solution will be similar to the DB solution. Studies ongoing.

All available estimations are at 2007 levels; Since then costs may have changed!

Conclusion

- No major obstacles from the transport point of view,
- Shaft layout and infrastructure equipment (such as cranes and lifts) may evolve with CLIC machine equipment dimensions/ characteristics,
- Strongly recommend to move klystron racks out of the transport passage in the "Klystron tunnel",
- Cost estimate will be reviewed once final tunnel and equipment layout available.

What's next?

- Equipment data tables to be updated,
- The Klystron tunnel is still to be studied (eg. monorail or forklift solution for installing solenoids),
- Cost estimation to be updated (PBS tool).

Questions? Thank you ©