ATF2 Critical Overview

Edu Marin¹ emarinla@cern.ch

¹CERN, Geneva, Switzerland

January 23rd, 2018

Accelerator sessions: Beam Dynamics (ATF2+MDI) CLIC Workshop 2018, CERN (Switzerland)

Acknowledgements: M. Patecki, K. Kubo

Outline

Tuning Procedure

- FF Matching
- Jitter Orbit
- Beam Size Error

ATF2 Operation 2016-2017

2016-2017 Run Operations under Study

Run	Tuning	Lattice	Minimum σ_{v}^{*}	Notes
	Procedure	β_x^* =4mm	[nm]	
		β_y^* =0.1mm		
16/02/05	Standard	$10\beta_x 1\beta_y$	47±6	
16/02/24	Standard	$10\beta_x 1\beta_y$	$65{\pm}8$	
16/03/10	Standard	$10\beta_x 1\beta_y$	41±2	2 nd Bunch
16/05/20	Standard	$10\beta_x 1\beta_y$	75±10	
16/06/16	Standard	$10\beta_x 1\beta_y$	$69{\pm}5$	
16/11/24	Standard	$10\beta_x 1\beta_y$	60±5	
16/12/01	Standard	$10\beta_x 1\beta_y$	74±9	
17/02/15	Standard	$10\beta_x 1\beta_y$	82±14	
17/06/15 *	Standard	$10\beta_x 1\beta_y$	89±6	
17/12/08	Standard	$10\beta_x 1\beta_y$	63±4	Sext align.
17/12/14	Standard	$20\beta_x 0.25\beta_y$	97±6	not applied

*mOTR non-operational

Standard Tuning Procedure

Dispersion + Coupling + IP Twiss + Sext Alignment IP Knobs + BSM Tuning

• Dispersion correction every 6-8h by using the Σ -knob

Emittance Measurement and Coupling Correction

Coupling correction by optimization of skew quads

Twiss measurement ⇒ should be exploited for matching

Final Focus Matching

- mOTR provides a Twiss measurement @ OTRs
- Quadrupoles QD18X, QF19X, QD20X, QF21X + QMFFs can be rematch to IP Twiss
- Preserving the following constraints
- $\beta_{x,y}^*$ • $\alpha_{x,y}^*=0$ • $\eta_{x,y}^{\text{MFB1FF}}=0$ • $\alpha_{x,y}^{\text{MFB2FF}}=0$ • $\alpha_{x,y}^{\text{MFB2FF}}=0$

- $\Delta \phi_{MFB1FF \rightarrow IP} = n_{\overline{2}}^{\pi}$
- $\Delta \phi_{MFB2FF \rightarrow IP} = n \frac{\pi}{2}$

•
$$\Delta \phi_{ZH1FF \rightarrow IP} = n \frac{\pi}{2}$$

• $\Delta \phi_{ZV1FF \rightarrow IP} = n \frac{\pi}{2}$

Successful attempt in Feb 2015 †

[†]https://agenda.linearcollider.org/event/6283/contributions/29303/attachments /24296/37607/Extraction_Status.pdf

IP Twiss Measurement

- $\sigma_{\rm V}^*$ (wire scanner or BSM) when scanning α -knob
- Alternative method by RND jitter sources
 - also provides information along the beamline

Data taken 2016/02/02 - Day Shift ‡

¹http://atf.kek.jp/twiki/bin/view/ATFlogbook/Log20160202d

IP Tuning

§

- Beam (various aberrations to be corrected)
- Shintake Monitor
 - various modes, laser paths, timings, waist
- Time consuming process
 - critical for dynamic systems
- Measurement Error
 - Correction provided by knobs is comparable to Shintake measurement error

Similar error bars are obtained in other modes

[§]Data taken 2016/02/05 - 174deg mode - Day Shift

IPBSM Error

- IPBSM modulation errors larger than few percent impact the tuning dramatically
- Av * (1.0 + M * cos(x + Phi)) is fitted function on (raw or statistical data)

[¶]Data taken 2017/12/14 - 174deg mode - Day Shift

Jitter Conditions I

Jitter Conditions II

Jitter Conditions III

Orbit Conditions

Modulation Signal

Is the modulation obtained by Shintake monitor correlated with beam orbit?

• Low frequency removed by FFT from Cherenkov signal

Orbit data also treated by SVD

Modulation Signal vs Beam Jitter @ BPMs

BPMs used in the study:

- MQM13FF
- MQM12FF

- MQF9AFF
- MQD8FF

MFB1FF

MQF7FF

MQD4BFF

Tuning Procedure

Beam Size Error

Modulation Error vs Beam Jitter @ single phase

Correlation Coefficients

• 2016/02/05

• 2017/12/14

Correlation Coefficients-II

Correlation Coefficients-III

• 2016/11/24

2017/02/15

Correlation Coefficients Summary

- Low correlations are observed for 2016/02 and 2016/03 runs
- Higher correlations are observed for 2017/02, 2017/06 and 2017/12 runs

Beam Size Error vs Phase Error I

Beam Size Error vs Phase Error II

Beam Size Error vs Phase Error III

Conclusions & Recommendations

- Standard tuning procedure has been proven to work (Initial 2016 runs
 - mOTR (emittance, coupling, matching)
 - Sextupole alignment
- Other variables into play: jitter, orbit, Shintake, ...?
 - Jitter conditions seems to be equivalent
 - Orbit condition is difficult to assess
- Beam size error should be reduced
 - Correlation coefficient explain modulation fluctuations intermittently and mostly between high and low modulation phases

Other hidden variables?

Additional Suggestions:

- Scan knobs obtained for the current lattice
- Monitoring the jitter at IP
- 2-Bunch operation mode?
- Weighted fit on peaks and valleys to determine modulation

BACK UP

Fringe Scan

Dataset: base171213_174431.binary

Event selection Data: Cherenkov Point/step: 10 Intensity cut* [e9]: 1.40 < I < 1.70 Phase scan direction: Positive

F30U 5.0 F30L 2.0 Prism 12.00 Lambda/2 0.00 M30UX 10.2545, M30LX 10.9143, M3LX 10.7300, Mirror4X 4.9770, Mirror8X 9.0436, Mirror7X 9.7750, M30UY 9.8980, M30LY 10.2786, M3LY 10.4900,

Fit results: Av*(1.0+M*cos(x+Ph)) CONVERGED

Modulation: 0.738 +/- 0.042

Beam Size:	92.5 + 15.8 -17.9 nm
Average:	2459.624 +/- 70.225
Phase:	1.249 +/- 0.054
Chi2/ndf:	9.5960e+01 /81

Mirror4Y 9.5730. Mirror8Y 8.3650. Mirror7Y 6.6100.