Intensity-dependent effects at ATF2 using BPM measurements

P. Korysko CERN

Outline

- Analysis of BPM data taken in December 2017.
- BPM resolution calculation along the beamline.
- Using SVD technics to extrapolate charge-related physical effects along the beamline.

BPM resolution calculation

$$\begin{pmatrix} d_{1k} \\ d_{2k} \\ \vdots \\ d_{Mk} \end{pmatrix} = \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{i\neq k,1} & \cdots & d_{1N} \\ d_{21} & d_{22} & \cdots & d_{i\neq k,2} & \cdots & d_{2N} \\ \vdots & \vdots & & \vdots & & \vdots \\ d_{M1} & d_{M2} & \cdots & d_{i\neq k,1} & \cdots & d_{MN} \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix}$$

$$\begin{pmatrix} d_k & D_k & V \end{pmatrix}$$

 d_{ik} = measured displacement in BPM k for machine pulse i M = number of machine pulses N = number of BPMs v = correlation coefficients between all BPMs and the one of interest

BPM resolution calculation

$$SVD(D_k) = USV^T$$

$$\Rightarrow D_k^{-1} = VS^{-1}U^T$$

$$d_k = D_k \cdot v \iff v = D_k^{-1} \cdot d_k$$

Position residuals vector:

$$R_{k} = d_{k} - D_{k} \cdot v$$

$$\sigma_{k} = \sqrt{\frac{\sum_{i}^{M} R_{ki}^{2}}{N}}$$

M

Resolution of BPM *k*:

CLIC Workshop 2018

BPM resolution calculation

January 23rd 2018

BPM resolution along the beam line – vertical plane

Improvement of the average BPM resolution.

BPM resolution dependence with charge – vertical plane

Singular Value Decomposition

1

$$D = \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1N} & q_1 \\ d_{21} & d_{22} & \cdots & d_{2N} & q_2 \\ \vdots & \vdots & & \vdots & \vdots \\ d_{M1} & d_{M2} & \cdots & d_{MN} & q_M \end{pmatrix}$$

1

 d_{ik} = measured displacement in BPM k for machine pulse i M = number of machine pulses N = number of BPMs q_i = charge of pulse i

SVD – Adding charge information

$$D = \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1N} & q_1 \\ d_{21} & d_{22} & \cdots & d_{2N} & q_2 \\ \vdots & \vdots & & \vdots & & \vdots \\ d_{M1} & d_{M2} & \cdots & d_{MN} & q_M \end{pmatrix}$$
 Adding charge information

 d_{ik} = measured displacement in BPM k for machine pulse i M = number of machine pulses N = number of BPMs q_i = charge of pulse i

Charge

SVD – Details

$$SVD \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1N} & q_1 \\ d_{21} & d_{22} & \cdots & d_{2N} & q_2 \\ \vdots & \vdots & & \vdots & \vdots \\ d_{M1} & d_{M2} & \cdots & d_{MN} & q_M \end{pmatrix}$$
$$= \begin{pmatrix} u_{11} & \cdots & u_{1M} \\ u_{21} & \cdots & u_{2M} \\ \vdots & & \vdots \\ u_{M1} & \cdots & u_{MM} \end{pmatrix} \begin{pmatrix} s_{11} & 0 & \cdots & \cdots & 0 \\ 0 & s_{22} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & s_{N+1N+1} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \\ M \times M \end{bmatrix} \begin{pmatrix} v_{11} & \cdots & v_{1N+1} \\ v_{21} & \cdots & v_{2N+1} \\ \vdots & & \vdots \\ v_{N+11} & \cdots & v_{N+1N+1} \end{pmatrix} \\ \begin{bmatrix} M \times M \end{bmatrix} & \begin{bmatrix} M \times N+1 \end{bmatrix} & \begin{bmatrix} N+1 \times N+1 \end{bmatrix}_{11} \end{pmatrix}$$

Charge

Focus on Run1 for the following SVD studies

SVD – Singular value spectrum

CLIC Workshop 2018

V is called "spatial vector"

15

16

BPM number	BPM name	s(m)	Туре
6	MQF4X	14.490	Stripline
10	MQD8X	22.935	Stripline
15	MQD13X	31.680	Stripline
25	MQM14FF	54.816	CBPM
27	MQM13FF	56.316	CBPM

Reconstructed matrix

Reconstructed matrix D_{q} keeping only 6th singular value

CLIC Workshop 2018

Surface plot Run1

Surface plot Run3

Vertical orbit distortion

MQF4X 14.490 46.86 41.4 MQD8X 22.935 -139.50 -132.4 MQD13X 31.680 54.80 65.4 MQF19X 40.058 -5.90 -4.4 MQD20X 43.824 -5.48 -5.4 MQF21X 47.816 -0.78 -1.4 MQM16FF 53.316 1.02 -2. MQM15FF 53.316 1.02 -2.	
MQD8X 22.935 -139.50 -132.4 MQD13X 31.680 54.80 65.4 MQF19X 40.058 -5.90 -4.4 MQD20X 43.824 -5.48 -5.5 MQF21X 47.816 -0.78 -1.4 MQM16FF 51.582 0.08 0.0 MQM15FF 53.316 1.02 -2.	48
MQD13X 31.680 54.80 65.4 MQF19X 40.058 -5.90 -4. MQD20X 43.824 -5.48 -5.3 MQF21X 47.816 -0.78 -1.4 MQM16FF 51.582 0.08 0. MQM15FF 53.316 1.02 -2.	34
MQF19X 40.058 -5.90 -4. MQD20X 43.824 -5.48 -5.3 MQF21X 47.816 -0.78 -1.3 MQM16FF 51.582 0.08 0.3 MQM15FF 53.316 1.02 -2.)6
MQD20X 43.824 -5.48 -5. MQF21X 47.816 -0.78 -1. MQM16FF 51.582 0.08 0. MQM15FF 53.316 1.02 -2.	96
MQF21X 47.816 -0.78 -1. MQM16FF 51.582 0.08 0.7 MQM15FF 53.316 1.02 -2.	36
MQM16FF 51.582 0.08 0. MQM15FF 53.316 1.02 -2. MOM14FF 54.916 0.055 1.02	53
MQM15FF 53.316 1.02 -2.	73
	17
MQM14FF 54.816 34.55 15.3	35
MFB2FF 55.654 1.56 0	03
MQM13FF 56.316 124.24 93.	53
MQM12FF 57.816 6.59 6.	91
MQM11FF 59.416 0.02 0.	02
MQD10BFF 60.916 2.53 2.	59
MQD10AFF 61.816 -7.93 -7.	52
MQF9BFF 63.116 -6.06 -5.	90
MSF6FF 63.676 -4.61 -4.	81
MQF9AFF 64.236 -6.53 -5.	53
MQD8FF 66.036 4.99 4.	70
MQF7FF 67.936 6.84 6.4	85
MQD6FF 69.836 10.41 9.1	39
MQF5BFF 71.636 0.51 0.	19
MSF5FF 72.196 5.63 5.	02
MQF5AFF 72.756 0.11 1.	06
MQD4BFF 74.056 0.05 0.1	05

...

...

...

...

Let's introduce: \mathbf{d}_{q} the orbit distortion due to the charge in $\mu m/nC$.

25

Vertical orbit distortion

BPM name	s(m)	d _q (µm/nC) run3	d _q (µm/nC) run1
MQF4X	14.490	46.86	41.48
MQD8X	22.935	-139.50	-132.84
MQD13X	31.680	54.80	65.06
MQF19X	40.058	-5.90	-4.96
MQD20X	43.824	-5.48	-5.36
MQF21X	47.816	-0.78	-1.53
MQM16FF	51.582	0.08	0.73
MQM15FF	53.316	1.02	-2.17
MQM14FF	54.816	34.55	15.35
MFB2FF	55.654	1.56	0.03
MQM13FF	56.316	124.24	93.53
MQM12FF	57.816	6.59	
MQM11FF	59.416	0.02	100
MQD10BFF	60.916	2.53	nC)
MQD10AFF	61.816	-7.93	/un
MQF9BFF	63.116	-6.06	50 ອ
MSF6FF	63.676	-4.61	hard
MQF9AFF	64.236	-6.53	e 0
MQD8FF	66.036	4.99	to tl
MQF7FF	67.936	6.84	due
MQD6FF	69.836	10.41	G -50
MQF5BFF	71.636	0.51	torti
MSF5FF	72.196	5.63	
MQF5AFF	72.756	0.11	Drbit
MQD4BFF	74.056	0.05	0

Let's introduce: \mathbf{d}_{q} the orbit distortion due to the charge in µm/nC.

Run1

Vertical phase advance

Outlook

- Knowing the charge-linked physical effects, assess incoming beam jitter from experimental data.
- Implement a Dispersion Free Steering (and Wakefield Free Steering) correction in ATF2.
- Pursue the studies using the SVD calculation technics using these correction schemes.
- Reproduce in simulation the observed phenomena.

Thank you

Backup slides – Surface plot Run1

Backup slides – Surface plot Run3

Backup slides

