# SOFTWARE DEVELOPMENTS AND DETECTOR MODEL

#### CLIC Workshop 2018

#### Marko Petrič



#### On behalf of the CLICdp collaboration

Geneva, 23 January 2018



Software Developments and Detector Model

#### **Detector Model**

- Geometry of final detector model implemented: CLIC\_o3\_v014
  - 6 new models since last year (minor changes)
  - Birks' law, unified readout, shift segmentation, overlaps
- Final production detector to be named CLICdet
- From now on only bug fixes, if necessary
- Documented in detail in CLICdp-Note-2017-001





#### **Simulation Parameters**

- Geant4 version 10.2.2, frozen at least for now, large changes in physics list (FTFP\_BERT) afterwards
- Evaluating Geant 10.3.3 and 10.4.0
  - difference in shower development
- DetailedShowerMode, all individual calorimeter contributions (timing)
- ► Changed magnetic field stepper HelixSimpleRunge → G4ClassicalRK4
  - factor 2 improvement for single muons
  - 25% improvement for single pions





## **Simulation Performance**

- Startup time slow, due to many volumes in tracker ~2min
- Simulation time for 3 TeV ttbar event: ~3 min/event
- Output file size: 14 MB/event with detailed shower mode
- Memory: 1.4 GB, well below 2GB/core for grid sites

#### **Tracking Developments**



- Using ConformalTracking track finding
- Performs well down to 10° in CLIC case
- Successfully tackles displaced tracks
- Technical rewrite:
  - Improved memory management
  - Usage of fast math etc.  $\rightarrow$  30% faster
- More than 99% efficiency for above 1 GeV
- Using DDKalTest track finding
- Achieving resolution of ~ 2 × 10<sup>-5</sup>GeV<sup>-1</sup> at high energy in central barrel
- More info  $\rightarrow$  talk by E. Leogrande (Tue.)



#### **Calorimetry Performance and Validation**



- Modification in PandoraPFA to address long standing issues of inefficiency of charged particle ID in Calo transition region
  - Only minor effect of gap remaining
- Adopted software compensation as default in Pandora settings
- Developed CLIC specific weights
- Extending reweighing procedure to higher energies and densities
- Improved JER for higher centre-of-mass energies
- ▶ More info → talk by M. Weber (Thur.)



## **Flavour Tagging Developments**

- Using LCFIPlus
- Studying impact of vertex resolution only on flavour tagging
- Larger impact of single point resolution on c tagging efficiency compared to b tagging efficiency
- Strides with Conformal tracking and bkg. overlay underway
- ▶ More info → talk by I. Garcia Garcia (Tue.)



## Flavour Tagging Developments

- Using LCFIPlus
- Studying impact of vertex resolution only on flavour tagging
- Larger impact of single point resolution on c tagging efficiency compared to b tagging efficiency
- Strides with Conformal tracking and bkg. overlay underway
- More info  $\rightarrow$  talk by I. Garcia Garcia (Tue.)



# Forward Region

- Detailed look at performance
- Good reconstruction efficiencies, energy resolution as expected
- Extended BeamCal reco for LumiCal reco
- Achieving expected polar angle resolution
- More info → talk by A. Sailer (Tue.)



LumiCal



# **Final Reconstruction Workflow**

**Reconstruction workflow** 

- 1. Overlay
- 2. Digitisation
- 3. Track Pattern recognition (TruthTracking, ConformalTracking)
- 4. Track Fit (Refit for better track parameter estimate)
- 5. Particle Flow Reconstruction (PandoraPFA)
- 6. Forward calorimeter reconstruction (LumiCal/BeamCal)
- 7. PFO selection
- Implemented in one unified steering file for the reconstruction that can be configured on the fly: avoid duplicating parameter settings in different files that will diverge as much as possible CLICPerformance/examples/clicReconstruction.xml
- Marlin --Config.Tracking=Conformal --global.LCI0In...

#### **Reconstruction run-time Performance**

- Reconstruction chain finalized
- Improvements since last year:
  - Improvements in reconstruction time
  - Improvements in memory management
- Automated check memory leaks via valgrind
- Tracking run-time/hot-spot checks with "Intel VTune Amplifier"
- Reconstruction time for 3 TeV ttbar event: ~15-20 min/event
- Reconstruction takes ~ 5 times longer than simulation

# Monitoring Code Quality 1/2

- Run on merge re-build of iLCSoft with gcc and clang
- Run simulation and reconstruction tests with new build
- If all tests pass, re-deploy to CVMFS directly
- Individual nightlies to monitor number of compiler warnings
  - Once package without warnings, easy to disallow new ones (-Werror in Cl build)
  - Since last year fixed ~ 2000 warnings
  - many packages with 0 warnings

| S | w | Name ↓            | Last Success              | Last Failure | Last Duration | # Compiler Warnings |
|---|---|-------------------|---------------------------|--------------|---------------|---------------------|
| ٢ | * | aidaTT            | 6 hr 47 min - <u>#253</u> | N/A          | 56 sec        | 0                   |
| ٥ | * | CED               | 23 hr - <u>#250</u>       | N/A          | 24 sec        | 116                 |
| ٢ | * | CEDViewer         | 15 hr - <u>#250</u>       | N/A          | 50 sec        | <u>192</u>          |
| ٢ | * | ClicPerformance   | 9 hr 33 min - <u>#280</u> | N/A          | 51 min        | 0                   |
| ٢ | * | Clupatra          | 12 hr - <u>#249</u>       | N/A          | 45 sec        | 22                  |
| ٢ | * | ConformalTracking | 19 hr - <u>#247</u>       | N/A          | 43 sec        | 0                   |
| ٢ | * | DDKalTest         | 11 hr - <u>#255</u>       | N/A          | 37 sec        | 2                   |
| ۲ | * | DDMarlinPandora   | 18 hr - <u>#245</u>       | N/A          | 1 min 5 sec   | 0                   |
| ٢ | * | FCalClusterer     | 14 hr - <u>#247</u>       | N/A          | 4 min 33 sec  | 17                  |
| ۲ | * | ForwardTracking   | 19 hr - <u>#254</u>       | N/A          | 1 min 18 sec  | 230                 |
| ۲ | * | ILCU11            | 20 hr - #245              | N/A          | 41 sec        | 0                   |
| 0 | * | KalDet            | 13 hr - <u>#252</u>       | N/A          | 2 min 7 sec   | 262                 |
| ۲ | * | KalTest           | 10 hr - <u>#247</u>       | N/A          | 1 min 12 sec  | 115                 |
| ۲ | * | KiTrack           | 11 hr - <u>#249</u>       | N/A          | 58 sec        | 96                  |
| ۲ | * | KiTrackMarlin     | 23 hr - <u>#249</u>       | N/A          | 46 sec        | 192                 |
| ۲ | * | LCFIPlus          | 13 hr - <u>#250</u>       | N/A          | 2 min 35 sec  | 6                   |
| ۲ | * | LCFIVertex        | 20 hr - <u>#249</u>       | N/A          | 4 min 6 sec   | 4                   |
| ۲ | * | logeo             | 4 hr 17 min - <u>#257</u> | N/A          | 6 min 15 sec  | 0                   |
| ۲ | * | LCIO              | 56 min - <u>#247</u>      | N/A          | 5 min 27 sec  | <u>10</u>           |
| ۲ | * | Marlin            | 4 hr 5 min - <u>#252</u>  | N/A          | 1 min 37 sec  | 0                   |
| ۲ | * | MarlinDD4hep      | 1 hr 33 min - <u>#250</u> | N/A          | 17 sec        | 0                   |
| ۲ | * | MarlinFastJet     | 23 hr - <u>#247</u>       | N/A          | 31 sec        | 0                   |
|   |   | MarlinKinfit      | 16 hr - #246              | N/A          | 1 min 8 sec   | 226                 |

# Monitoring Code Quality 2/2

- Compile iLCSoft with several compilers: GCC 6.2, 7.2 LLVM/Clang 3.9, 5.0
- Test if simulation and reconstruction work
- Deploy immediately to CVMFS via gitlab for usage in CI
- Rebuild iLCSoft if PR merged on GitHub to ConformalTracking, DD4hep, DDMarlinPandora, Icgeo, LCIO, Marlin, MarlinReco...



#### Use same procedure for tags

Marko Petrič (CERN) marko.petric@cern.ch

#### **Pilot Production**

- Compare previous production with new detector and new reconstruction
  - 1. 350 GeV: ee  $\rightarrow$  HZ, Z  $\rightarrow$  qq
  - 2. 1.4 TeV: ee  $\rightarrow$  qqlv(WW)
  - 3. 3 TeV: ee  $\rightarrow$  HHvv
- Generated samples over the end-of-year closure
  - Test also performance of iLCDIRAC (see talk H. Zafar)



Marko Petrič (CERN) marko.petric@cern.ch

Software Developments and Detector Model

13

#### $ee \rightarrow HZ, Z \rightarrow qq$ Comparison

- Comparison of ProdID=2558(OLD) and ProdID=9400(NEW)
- e: slightly more narrow in  $\eta$
- $\mu$ : slightly harder p<sub>T</sub> spectrum
- jets: no significant change in distributions
- Truth selection for  $H \rightarrow \mu\mu$ 
  - Decreased resolution for factor 1.5



#### $ee \rightarrow HZ, Z \rightarrow qq$ Comparison

- Comparison of ProdID=2558(OLD) and ProdID=9400(NEW)
- e: slightly more narrow in  $\eta$
- $\mu$ : slightly harder  $p_T$  spectrum
- jets: no significant change in distributions
- Truth selection for  $H \rightarrow \mu\mu$ 
  - Decreased resolution for factor 1.5



#### $ee \rightarrow HZ, Z \rightarrow qq$ Comparison

- Comparison of ProdID=2558(OLD) and ProdID=9400(NEW)
- e: slightly more narrow in  $\eta$
- $\mu$ : slightly harder  $p_T$  spectrum
- jets: no significant change in distributions
- Truth selection for  $H \rightarrow \mu\mu$ 
  - Decreased resolution for factor 1.5





## $ee \rightarrow qqlv(WW)$ Comparison

- Comparison of ProdID=3249(OLD) and ProdID=9402(NEW)
- lepton type: new has more muons and less electrons
- lepton energy spectrum: new is softer
- lepton  $\theta$  : new is less forward
- jet energy spectrum: new is harder
- jet  $\theta$  : new is more forward



## $ee \rightarrow qqlv(WW)$ Comparison

- Comparison of ProdID=3249(OLD) and ProdID=9402(NEW)
- lepton type: new has more muons and less electrons
- lepton energy spectrum: new is softer
- lepton  $\theta$  : new is less forward
- jet energy spectrum: new is harder
- jet  $\theta$  : new is more forward







#### **Production Plans**

- All elements for large scale production in place
- Increase pilot production sample to the scale of 10<sup>6</sup>
- Generate new samples with WHIZARD 2.6.3.
- Include new beam-spectra and background (see talk D. Arominski)
- Start with BSM studies

#### Summary

- Detector model finalised and validated
- Note on detector performance being finalised
- Reconstruction chain finalised and validated
- Tested simulation and reconstruction chain in pilot production
- Large scale production to commence in coming weeks