

Lefe

CEE.

High-gradient results at CERN I

Anna Vnuchenko

on Behalf of the Xbox Team Univ. of Valencia and CSIC (ES)

> CLIC Workshop 22nd January 2018

Outline

- Main testing objectives
- Overview of testing facilities
- □ High power testing of CLIC AS prototypes
- Conditioning progress of the structure under test
- Conclusions and next steps

Main testing objectives:

- A comparative study of the structure performance
- Implementation new technology
- To gain operational experience
- Statistics improvement
- Long term operation

CLIC Workshop 2018

Overview of testing facilities

Klystron-based test stands at CERN:

- 11.994 GHz, X-band:
 - Xbox 1 2: 50 MW klystron, 50 Hz,
 Xbox 3: 4x6 MW klystrons, 50 400 Hz,
 4 structure test slots.
- **2.9985 GHz, S-band,** 25Hz (Sbox).

High Power testing of AS prototypes

Five structures with 4 different designs currently under test at CERN:

- TD26CC R05 N2 (Xbox1)
- T24 PSI N1 (Xbox2):
- TD24 SIC N2 (Xbox3 Line 3)
- T24 PSI N2 (Xbox3 Line 4)
- 3 GHz BTW N1 (Sbox)

clc

Conditioning status: T24 PSI N1 and N2

Undamped structure shows best performance up to now.

T24 PSI N1:

- previously tested structures at XBox3
- ✓ gradient about 110 MV/m for 200 ns
- moved to Xbox 2 => 118 MV/m at 200 ns

T24 PSI N2:

test at Xbox 3: gradient above 110 MV/m

Conditioning status of T24 PSI N1

□ **The previous test:** BD distribution increases along the structure following the field distribution.

The current test:

Conditioning status of T24 PSI N2

- Phase distribution of the BDs spaced by 120 degrees.
- Combination of timing and phase information gives better accuracy in breakdown localization.

clc

Conditioning behavior: TD24 SiC N1 and N2

Description: Silicon Carbide accelerating structure (TD24 with HOM damping material).

- **TD 24 SiC N1** was lost due to operation issue:
 - post-mortem analysis will be carried out.
- □ **TD 24 SiC N2**: no evidence of hot spot; gradient around **97 MV/m** at 50ns pulse.

Conditioning status of TD24 SiC N2

Indicates the detuning of the structure

Conditioning status of HG medical linac structure

Backward Travelling Wave (BTW) structure tested at Sbox since November 2016.

TUrning Linac for Protontherapy

	Klystron modulat	a &	RF-vacuum pumping port		rt	RF load	
	-						
Amplif	ier	Direction couple	nal r	Device with F	e Under araday	Test cups	

Number of RF cells

RF phase adv.

Total length

Max Es/Ea

Filling time

Group velocity

(1st/last)

Functional diagram of S-band test facility

The 3 GHz BTW prototype

12

150 deg

189.84 mm

3.9

220 ns

0.39 / 0.21 %c

Conditioning status of 3GHz BTW

Tested to maximum power available and well over initial specifications. Testing continues after switching to a new klystron with more potential power.

Conditioning status of 3 GHz BTW

High-gradient physics studies:

- RF conditioning,
- BD localisation,
- Dependence of BDR on field,
- Dark current measurements (change over time).

Dark current is measured by Faraday cups and Radiation Monitors.

Dependence BDR vs Esurf: many interruptions due to instability of the modulator which have possible impact on the statistics.

Field enhancement factor β = 35-40.

Comparison of the conditioning vs. gradient

□ Conditioning algorithm strongly affects the conditioning progress.

Comparison of the gradient of different prototypes tested at CERN.

Comparison of the conditioning vs. the Esurf

The surface electric field is presented in comparison with CLIC structures (Es/Ec \approx 2) and BTW (Es/Ec = 3.9).

Conclusions

- □ Five structures with 4 different designs currently under test at CERN.
- Gradient of the acceleration structures above 100 MV/m, S band 60 MV/m.

Xbox 1 continues HG test for better statistics of TD26CC.

Xbox 3 line 3-4 is used to preconditioning of the acc. structures

Xbox 2: high power test

Xbox 3 line 1-2 is used to test components (3D loads) at this moment.

- Conditioning algorithms strongly influence the conditioning progress.
- **T24PSI N1** reaches **118 MV/M** at 200 ns.

What is next?

Complete the testing of the structures and components that are currently being tested.

□ Continue test dependence pulse length vs. BDR.

	Current test	Next test	Next	
Xbox 1	TD26 PSI N2	To be continued	Test with beam from CLEAR	
Xbox 2	T24 PSI N1	T24 PSI N2	TD26_SiC superstructure	
Xbox 3 Line 1	3D-printed Spiral load	Power Splitter	Change klystron and test TD26R1 structures	
Line 2	3D-printed Compact load	Phase Shifter		
Line 3	TD24 R05 SIC N2	Change PC	Liphakad (Dakad TD24	
Line 4 T24 PSI N2		TD24 R05 SIC N2	UIIDakeu/Bakeu ID24	

Thank you for your attention!

CLIC Workshop 2018

Thank you for your attention!

