Depressed collector option for HE 50 MW X-band klystron

Jeff Neilson, Mark Kemp, Brandon Weatherford – SLAC

CLIC Workshop January 23, 2018

Overview

- Pulsed depressed collector technology
- Current programs
- Application to HEX
- Conclusions

High Efficiency Retrofit Program for S-Band Source at SLAC

Two programs to upgrade efficiency and power of 65MW S-Band 5045 tubes used in SLAC LCLS

- Redesign of 5045 interaction circuit to increase rf output power via increase in efficiency using high efficiency bunching technique Bunch-Align-Collect (BAC)
- Increase system efficiency by recovery of energy in spent beam of klystron (depressed collector)
- Both approaches constrained to be "plugcompatible"

Conventional Depressed Collector Power Supply

Feed-forward energy recovery scheme

Ideal Characteristics for "drop-in" retrofit for use of depressed collectors for increased efficiency:

- Existing infrastructure is re-used so power supply remains the same
- Energy is recovered by a separate component, and returned to the DC supply
- Energy recovery is completely passive

An "Inverse" Marx Energy Recovery Modulator

SLAC

- Capacitors charge in series, and discharge in parallel
- Each cell pre-charged to a voltage
 - The initial voltage at a tap is the number of cells below that tap times the pre-charge voltage

During pulse

 Voltage rises in response to current to stage, and capacitance

In-between pulses

- CLC resonant structure transfers energy in capacitors to modulator
- Voltages re-settle to pre-charge value

Ability to Recover Rise and Fall of Pulse

SLAC

RF is applied when the cathode current is flat

Energy wasted in collector during rise and fall times

- A key advantages of a depressed collector for pulsed klystrons is the ability to recover energy during the rise and fall time
- Even for well designed modulators with short rise and fall, large fractions of the energy supplied to the beam are wasted
- With proper energy recovery, could relax modulator rise and fall constraints, potential cost savings

Test Results and Current Programs

Sub-booster Demonstration (S band, 65 kW, 25 kV tube)

Sub-booster Demonstration Comparison of Simulation to Experiment

Without pre-bias applied:

Capacitors pre-charged:

Current Testing at SLAC

- First test of multi-stage depressed collector with energy recovery between pulses has just been started
- Collaboration between SLAC and CPI
- Four stage collector on modified VKS-8262 tube (2.856 GHz, 5.5 MW peak, 6 us, 180 Hz, 45% efficiency)
- Collector predicted to improve total efficiency to 65%

Depressed Collector on VKS-8262

"Inverse" Marx power recovery module

Program for 5045 Test

- Will use radiation cooling with isotropic graphite surfaces
 - Collector efficiency 53 %
 - Total efficiency = 68%
 - Include three generations of secondaries
- Test in late 2017

Application to HEX Klystron

Efficiency Gain Estimate for HEX

- Theoretical upper limit for collector recovery efficiency $(\eta_{collector})$ obtained using spent beam data from HEX circuit design
- Total system efficiency given by

$$\frac{\eta_{elec}}{1 - \eta_{collector}(1 - \eta_{elec})}$$

Using circuit efficiency (η_{elec}) value of 0.7 from circuit efficiency calculations

Rough Power Savings Estimate

- Assume 50MW peak rf power, duty cycle 0.01%
- Average power savings per tube is 1kW for increase in efficiency from 70->80%
- Capturing the 30% energy loss in rise/fall time at 60% efficiency saves 2kW per tube
- For recent CLIC concept, 5000 tubes with operation time of 5000 hours/year:
 - 5000 tubes X 5000 hours X 3 kW X 50 Euro/MW hour => 3.8M Euro/year
- Calculation doesn't include savings from reduction in cooling costs, power plan acquisition cost, modulator cost reduction
- System efficiency
 - 0.7 modulator X 0.7 tube efficiency => 0.5
 - $(0.7 / (1 0.6(1 0.7)) \times 0.8$ tube efficiency => 0.68

Conclusions

- Pulsed depressed collector technology particularly useful for retrofitting low efficiency (<50%) existing systems
- Use of depressed collector for HEX klystron likely to provide 80% tube efficiency
- Because of HEX high tube efficiency, largest gains result from recovery of pulse rise/fall time power loss

Backup Slides

The Effect of Collector Efficiency on Overall Efficiency

Claimed correct relation:
$$\eta_{overall} = \frac{P_{rf,out}}{P_{beam,in} - P_{recovered}} \rightarrow \eta_{overall} = \frac{\eta_{rf}}{1 - \eta_{col}(1 - \eta_{rf})}$$

Claimed incorrect relation:

"If I have a 50% klystron, and a 50% efficient collector, half of the wasted energy is recovered, so I have a 75% efficient system"

$$\eta_{overall} = \frac{P_{rf,out} + P_{recovered}}{P_{beam.in}}$$
 $\eta_{overall} = \eta_{rf} + \eta_{col}(1 - \eta_{rf})$

- Say, with a 50% RF efficiency, and a 50% collector efficiency, the expected system efficiency would be 75%
- With 10W beam power in and 5W RF out, 5W*0.5=2.5W would be recovered and 2.5W would be wasted.
 - To produce 5W of RF out, how much net power is input to the system?
 - 5 W (for RF out) plus 2.5 W (wasted in collector) is 7.5W total input to the system
 - System efficiency = RF Pout/Pin = 5W/7.5W = 66%