Development of an enhanced lateral drift sensor

Breaking the small-pitch paradigm

<u>Hendrik Jansen</u>, Anastasiia Velyka Geneva, 24.1.2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Buried implants for local manipulation of the electric field in planar particle sensors

Achieve improved position resolution of charged particle sensors

Sensor chip

This is usually done by down-sizing the pitch

- \rightarrow Increases number of readout channels
- \rightarrow Potentially higher band width from detectors
- \rightarrow Less area on-chip per channel
- \rightarrow Higher power dissipation
- Miniturisation has limits
 - \rightarrow Size of bump bonds, wire bond pads, cross talk, ...
 - \rightarrow Minimum of logic/processing on-chip
 - \rightarrow Is there another solution?

Solder bumps

Readout chip

Buried implants for local manipulation of the electric field in planar particle sensors

Achieve improved position resolution of charged particle sensors

Buried implants for local manipulation of the electric field in planar particle sensors

Achieve improved position resolution of charged particle sensors

Buried implants for local manipulation of the electric field in planar particle sensors

Achieve improved position resolution of charged particle sensors

Towards the theoretical optimum of position resolution

Achieve improved position resolution of charged particle sensors

Towards the theoretical optimum of position resolution

Achieve improved position resolution of charged particle sensors

Towards the theoretical optimum of position resolution

Achieve improved position resolution of charged particle sensors

Towards the theoretical optimum of position resolution

Achieve improved position resolution of charged particle sensors

Towards the theoretical optimum of position resolution

Achieve improved position resolution of charged particle sensors

Induce lateral drift by locally engineering the electric field

- \rightarrow LATERAL electric field
- → Position-dependent charge sharing (collection at >1 electrode)
- \rightarrow Awareness of hemisphere (left/right of implant)

\rightarrow ENHANCED LATER DRIFT (ELAD)

No one has done this before

... can we do it?

Produce a functional prototype by the end of the funding period

- Extensive device simulation studies by Anastasiia Velyka
 → Find optimal parameters for an ELAD sensor
- Process simulations to find process for manufacture
 - \rightarrow alternate implantation and epitaxial growth
- **Define structures and parameters** for production → Feed-back to SDE structures
- Develop process with partners (ISE, CiS)

 → Test structures
 → Full wafers
- Flip chipping with TimePix3 sensor
- Tests at DESY/CERN
 - Lab: IV, CV
 - Test beam

design

Example of optimisation

• Tuning the implant concentration

Example of optimisation

• Tuning the implant concentration

1e15 4e-06 3e15 7e15 1e16 Standard Sensor Design 3e-06 Ð 2e-06 Depletion 1e-06 0 -1e+03 -9e+02 -8e+02 -7e+02 -6e+02 -5e+02 -4e+02 -3e+02 -2e+02 -1e+02 0

Total current vs Voltage

Example of optimisation

• Tuning the implant concentration

- Extensive device simulations
- Extensive process simulations
 - \rightarrow Implantation of Boron and Phosphorus
 - \rightarrow Varied the oxide/energy
 - \rightarrow Epitaxial growth (temperature budget)
 - \rightarrow Communicated to 'fab'

100 mm wafer

- Extensive device simulations
- Extensive process simulations
- End of November
 - Meeting with project partners (ISE, CiS, DESY) at ISE
 - Discussion of technical feasibility, preproduction, project timeline + tour of laboratory
- Expert review mid January
 very valuable input to make production a success
- At the moment, in parallel:
 - 1) creation of wafer layout files for production (DESY + CiS)
 - 2) initial tests at ISE for process development (waiting for results)

Conclusion

- Technologically challenging project (no one tried this before in HEP)
- Try to reach **theoretical optimum** of position resolution
- Interesting technology for future
 HEP detectors
- Opens new possibilities in sensor design
- Prototypes hopefully in Q2/Q3 2018

