

Results of CLICpix2 + C3PD assemblies

I. Kremastiotis, A. Nurnberg

CLIC Workshop 2018 CERN, 22-26 January 2018

- Introduction: Capacitively coupled pixel detectors
- Standalone C3PD / CLICpix2 characterisation
- Measurements with capacitively coupled assemblies
- Summary and further testing

Introduction to capacitively coupled pixel detectors

- High-Voltage (HV) CMOS sensors:
 - All electronics are placed in a deep N-well, which is also the collecting electrode
 - Due to the reverse applied high-voltage bias, a depletion region with a depth of $\sim 10 \ \mu m$ is created under the collection electrode, which leads to fast signal collection through drift
- Capacitively coupled pixel detectors:
 - A thin layer of glue is applied between the sensor and the readout chip
 - The charge collected in the HV-CMOS pixel is amplified by an on-pixel Charge Sensitive Amplifier (CSA) and then transferred to the readout chip

- Two chips have been designed in the framework of the CLIC vertex detector studies
 - The CLICpix2 readout chip [1] (65 nm CMOS process)
 - Simultaneous time (8-bit ToA) and energy (5-bit ToT) measurements, 10 ns time tagging
 - The C3PD HV-CMOS sensor chip [2], (180 nm HV-CMOS process)
 - Produced on wafers with 20 and 80 Ω cm resistivity for the substrate
 - 200 Ωcm samples will also be available
 - Both chips feature matrices with 128×128 square pixels, with $25 \ \mu m$ pitch
 - Successors of a 1st generation of chips that have been tested in capacitively coupled assemblies [3]

Capacitively coupled assemblies

- Capacitively coupled assemblies with the C3PD HV-CMOS sensor glued on the CLICpix2 readout chip have been produced at Geneva University with an SET Accura 100 flip-chip machine
 - 5 assemblies with the standard substrate resistivity for C3PD
 (20 Ωcm) have been measured in laboratory and/or beam tests
 - **2** more assemblies with 80 Ωcm C3PD chips have been produced
 - First laboratory results obtained with the 80 Ωcm assemblies.
 To be further tested in the coming weeks

Photo: M. Vicente

- y
- Laboratory and test-beam measurements of capacitively coupled assemblies were performed using the CaRIBOu data acquisition system [4]
 - CaRIBOu system improved in stability since August
 - In the test-beam, when the best efficiency is required, decoding is done offline to increase readout data rate
 - For shorter shutters, where the rate is not dominated by the readout, the data rate in test-beam has been increased by a factor of ~10

https://gitlab.cern.ch/Caribou

Test-beam setup (Photo: A. Nurnberg)

Standalone C3PD characterisation

- The chip has been tested using the internal test pulse injection, as well as with a ⁵⁵Fe source
- The results of the standalone test for bare chips with the standard substrate resistivity (20 Ωcm) [2] have shown:
 - Average charge gain: $190 \ mV/ke^{-1}$
 - RMS noise: $40 e^{-1}$
 - Rise time: 20 ns
 - Power consumption: $\sim 5\mu W$ per pixel (before power pulsing)
 - After power pulsing, the average power consumption over the 50 Hz cycle was estimated to be $\sim 16 mW/cm^2$
 - These results are close to the ones expected from simulations, and are within the detector requirements

Photo: S. Kulis

- Samples thinned down to 50 μm have been tested, apart from the standard thickness (250 μm)
 - No impact on the chip performance has been observed for the thinned-down samples
- Samples from the 80 Ωcm wafers have also been tested in standalone mode
 - Higher resistivity wafers have been produced using the same process, but in a different foundry than the ones with standard resistivity

Measurements with ⁵⁵Fe source

- Measurements with a ⁵⁵Fe source for one of the monitored pixels of the C3PD chip
 - **20** Ωcm (left) and 80 Ωcm (right)
 - **D** Potentially lower gain for the 80 Ωcm C3PD samples. More statistics are needed in order to investigate further

140

Amplitude [V]

Resulting amplitude spectrum from a ⁵⁵Fe source – 20 Ω cm

Resulting amplitude spectrum from a ^{55}Fe source – 80 Ωcm

	20 Ωcm (6 samples)	80 Ωcm (2 samples)
Gain [mV/ke ⁻]	190 ± 15%	165 ± 10%
C _{fb} [fF]	0.83 ± 15%	0.96 ± 10%
C _{test} [fF]	0.70 ± 2%	0.62 ± 7%

7

Sensor I-V characteristic

- The leakage current of the C3PD sensor as function of the HV bias has been measured for 5 samples with different resistivities and thicknesses.
 - **Capacitively coupled assemblies were produced with standard thickness (250 μm) sensor chips**
- 80 Ωcm samples show a (slightly) higher breakdown voltage

Measurements on coupling (glue) capacitance

- Following destructive cross-section measurements on two mechanical samples, the pad-to-pad distance is ~3 μm, largely dominated by passivation layers
- The simulated value of the glue capacitance is ~3.5 fF [5]
- A "special" C3PD pixel where the injected test pulse signal is connected directly to the coupling pad, was used to measure the coupling capacitance between the two chips

Cross-section of CLICpix2 + C3PD glue assembly

Plot: M. Vicente

Measurements on coupling (glue) capacitance

- The ToT was measured as a function of the injected pulse amplitude
 - First using the C3PD pixel with direct test pulse monitoring (the injected pulse resembles a square waveform)
 - Then using the CLICpix2 internal test pulse
- In both cases, the $\frac{ToT}{V_{inj}}$ was extracted for the linear part of the curve, where V_{inj} is the amplitude of the injected pulse
- The injected charge is $V_{inj} \times C_{coupl}$ for the pulses injected from C3PD and $V_{inj} \times C_{test}$ for the CLICpix2 internal test pulses
- Using the design value for the CLICpix2 test pulse injection capacitance ($C_{test} = 10 fF$), one can then estimate the coupling capacitance (C_{glue}):
 - Assembly 1: $C_{glue} = 3.66 \text{ fF}$
 - Assembly 6: $C_{glue} = 1.43$ fF
 - Assembly 7: C_{glue} = 2.95 fF

Measured ToT as a function of the test pulse DAC code injected from C3PD

Measured ToT as a function of the test pulse DAC code injected from CLICpix2

Test pulse measurements

- The above calculation only refers to one pixel at the edge of the pixel matrix
- The ToT has been measured for all CLICpix2 pixels, injecting the same C3PD test pulse amplitude
- Variations in response across the matrix have been observed in some assemblies
 - Assembly 6 shows strong inhomogeneity from glue dots
 - Gluing process to be optimised

CLICpix2 ToT response to C3PD test pulses, assembly 6

Test-beam measurements

- Test-beam measurements for capacitively coupled assemblies of CLICpix2 + C3PD (20 Ωcm) in CLICdp Timepix3 telescope
- Preliminary results show differences in cluster signals and sizes
 - Expected from varying glue assembly quality
- CLICpix2 threshold set to $\sim 850 \ e^-$
- Most dominantly single-pixel hits, limiting factor for spatial resolution
 - 8.5 9 μm residual RMS

Test-beam measurements

- The ToA counter is 8-bit long with 10 ns steps
 - $\hfill \Box$ Shutter is limited to 2.5 μs
- The time difference between reconstructed hit and track is plotted
 - Gauss fit of time residuals shows width of ~9 ns
- ToT information can be used to correct for time walk effect
 - After time-walk correction the time residual is reduced to 7 ns

Test-beam measurements

- Efficiency measurement
 - Across the pixel matrix and
 - Folded into a 2×2 pixel array
 - Overall efficiency of the assembly: 85 %

- Cross-talk asymmetric coupling
 - Asymmetric cross-talk was observed in some cases (eg. Assembly 5)
 - Could be a result of misalignment during the flip chip assemblies
 - To be cross-checked with test pulse data
- Charge transferred to the CLICpix2 front-end
 - Assuming a $1 \ ke^-$ MIP at the C3PD input, a charge gain of $190 \ mV/ke^-$ for the C3PD front-end, and a coupling capacitance $\sim 3.5 \ fF$, the expected charge at the input of the CLICpix2 front-end would be $\sim 4 \ ke^-$
 - The detected charge is ~40% less than expected (based on the ToT calibration and the CLICpix2 test pulse capacitance – slide 10)
 - Many uncertainties, calculations based on simulated/design values (MIP charge at C3PD, glue capacitance, charge to ToT conversion)

Simulations on signal transfer

- The signal transfer from C3PD to the CLICpix2 front-end was simulated using extracted netlist for both circuits
 - The coupling is assumed as an ideal capacitor C_c
 - A charge of 1 ke⁻ was used as the input of C3PD (rough approximation for a MIP charge)
 - Simulation performed for different pulse shapes. No significant degradation observed

- Simulated C3PD + CLICpix2 chain seems to behave as we would expect
- It is still not clear why the measured signal transferred from C3PD to CLICpix2 is weaker than expected
 - Measured values of the coupling capacitance are close to expected
 - The response to MIPs needs to be further studied

Summary and further testing

- Thanks to the capacitive coupling, it was possible to test the CLICpix2 readout chip with particles, before receiving assemblies with planar sensors
- The CLICpix2 and C3PD ASICs have been characterised in standalone mode as well as in capacitively coupled assemblies:
 - C3PD samples with 80 Ωcm substrate resistivity show similar performance to the ones with standard resistivity (20 Ωcm) in terms of noise, rise time and leakage current.
 - **Γ** First 80 Ωcm C3PD samples show a gain ~10% lower. More statistics are needed in order to investigate further
 - The amount of charge collected by drift is expected to be larger for the higher substrate resistivity to be confirmed in beam tests
 - Variations in glue uniformity and alignment have been observed
 - The measured response to MIPs is weaker than expected from simulations and calibration measurements
- Next steps:
 - C3PD samples with 200 Ωcm substrate resistivity will be characterised in beam tests (wafers are produced, chips are expected in the coming weeks)
 - Testing CLICpix2 with planar sensors is needed in order to fully characterise the chip.
 Single chip bump bonding of CLICpix2 and planar active-edge sensors is in progress at IZM.
 First assemblies expected in February.

Thanks to everyone who contributed to this work!

References

- [1] E. Santin, P. Valerio and A. Fiergolski: CLICpix2 User's Manual (2016) https://www.overleaf.com/4621916xdqqmb#/13998870/
- [2] I. Kremastiotis et al: Design and standalone characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector (2017), https://arxiv.org/pdf/1706.04470.pdf
- [3] N. Alipour Tehrani et al., Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector (2016) https://doi.org/10.1016/j.nima.2016.03.072
- [4] A. Fiergolski: A multi-chip data acquisition system based on a heterogeneous system-on-chip platform (2017), https://cds.cern.ch/record/2272077/
- [5] M.Vicente: Finite-element simulations of coupling capacitances in capacitively coupled pixel detectors (2017), https://cds.cern.ch/record/2267848/

Back-up slides

The CLIC vertex detector requirements

- Requirements for the CLIC vertex detector:
 - Single point resolution: 3 μ m
 - Material budget: $< 0.2\% X_0$ per detection layer (corresponding to $100 \ \mu m$ for silicon sensor and readout chip)
 - Time-stamping resolution: 10 ns
 - Power consumption: $< 50 \ mW/cm^2$ (after power pulsing)
- The CLIC beam structure consists of bunch trains at a repetition rate of 50 Hz
 - Each bunch train consists of 312 bunch crossings separated by 0.5 ns
 - Thanks to the low duty cycle of the CLIC beam (156 ns/20 ms), a power pulsing scheme can be introduced in order to power down the main driving nodes of the front-end between subsequent bunch trains. The average power consumption over the 50 Hz cycle can therefore be minimised
- The capacitive coupling between an active HV-CMOS sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study

The CLICpix Capacitively Coupled Pixel Detector (C3PD)

- Active HV-CMOS sensor to be used in capacitively coupled assemblies with the CLICpix2 readout chip
 - Produced in a commercial 180 nm HV-CMOS process
 - Requirements:
 - 128×128 square pixels with $25 \ \mu m$ pitch
 - Rise time: ~20 ns
 - Charge gain: $> 120 mV/ke^{-1}$
 - Power consumption: $< 50 \ mW/cm^2$ (both for sensor and readout chip, after power pulsing)
 - The analog front-end is based on a charge sensitive amplifier (CSA), followed by a unity gain buffer

ToT vs C3PD test pulse (for 'tot_clk_div = 0')

(3)

- The ToT was measured as a function of the injected pulse amplitude, using the C3PD pixel with direct test pulse monitoring (so that the injected pulse resembles a square waveform)
- As extracted from the slope of the curve, the 'gain' of the ToT is: $0.09 \frac{LSB}{mV}$, or $90 \frac{LSB}{V}$
- $\bullet \quad ToT = 90 \ V_{inj} \tag{1}$
- $V_{inj} = \frac{Q_{inj}}{C_{coupl}}$ (2) where V_{inj} is the pulse amplitude injected to the coupling capacitance, Q_{inj} the injected charge, and C_{coupl} the coupling capacitance

From (1) and (2):
$$ToT = 90 \frac{Q_{inj}}{C_{coupl}}$$

- The ToT was measured this time as a function of the CLICpix2 injected pulse amplitude
- As extracted from the slope of the curve, the 'gain' of the ToT is: $0.246 \frac{LSB}{mV}$, or $246 \frac{LSB}{V}$
- $ToT = 246 V_{inj}$ (4)
- $V_{inj} = \frac{Q_{inj}}{C_{test}} = \frac{Q_{inj}}{10 \cdot 10^{-15}}$ (5) where V_{inj} is the pulse amplitude injected to the test pulse capacitance, Q_{inj} the injected charge, and C_{test} the test pulse capacitance (10fF by design)

• From (4) and (5):
$$ToT = 24.6 \cdot 10^{15} Q_{inj}$$
 (6)

• From (3) and (6):
$$90 \frac{Q_{inj}}{C_{coupl}} = 24.6 \cdot 10^{15} Q_{inj}$$

$$\rightarrow C_{coupl} = 3.66 \, fF$$

