

A MONOLITHIC CHIP FOR THE CLIC SILICON TRACKER

R. Ballabriga, N. Egidos, I. Kremastiotis, E. Santin CERN, EP Department 1211 Geneva 23 Switzerland

Outline

- Requirements
- The ALPIDE chip
- The sensor
- Analog front-end
- Digital strip, chip architecture and periphery
- Summary and conclusions

Requirements for a chip for the CLIC silicon tracker [1]

- Channel dimensions:
 - − Single point resolution in one dimension \leq 7 μm (transverse plane)
 - Length of short strip/long pixel: 1mm -10mm (1mm fulfils the requirements for the different barrels)
- Energy measurement (For time walk correction and improving spatial resolution)
 - 5-bit resolution
- Time measurement:
 - 10ns bin, 8-bits
 - No multi-hit capability
- Material budget 1-1.5% X₀ (i.e. ~200μm for silicon detector and readout)
- Power consumption below 150mW/cm² (Power pulsing, duty cycle ~500ns/20ms (25x10⁻⁶))
- Radiation hardness (NIEL< 10¹⁰ neq/cm²/yr, TID < 1 Gy/yr)
- Monolithic sensor in Tower Jazz 180nm CMOS imaging process (Expertise in design due to ALPIDE effort)

ALPIDE CHIP

- ALPIDE chip: ALICE Inner Tracking System Upgrade
- Size 15mmx30mm, 512x1024 pixels
- Pixel size 29.24x26.88 μm²
- Pixel includes sensing diode, front-end, shaper, discriminator, digital section (ENC \sim 4e⁻, C_D=2.5fF, τ_p =2 μ s)
- Total pixel consumption ~300nW (~150mW/chip or 35mW/cm²)
- Tiny collection electrode, deep P-WELL (Full CMOS), $30\mu m$ epitaxial layer (High resistivity wafers (>1k Ω cm)
- Extensive tests before and after irradiation done to characterize the technology

The sensor

- Tower Jazz HR CMOS 180nm (2 versions of the process: Original/modified)
- Original:
 - Does not allow full depletion of the sensitive layer
 - Charge collection by diffusion and drift
- Modified process
 - N-type implant to fully deplete the epitaxial layer
- Choice for CLICTD. Advantages: low sensor capacitance, improved timing and improved radiation hardness.
- MIP Signal in thin Si layer ~50e⁻/h⁺/μm, 30μm depleted region i.e. 1500e-

The detector channel

- The detector unit cell consists of a strip of 30μm x 300μm
- It is segmented in 8 pixels
 - To ensure prompt charge collection in the diodes
- Measurement
 - Pixel hit within strip (8 bits)
 - Time of arrival of the signal at the strip (10ns bin, 8 bits) (first hit)
 - Energy deposit (Time over Threshold), 5 bits (pixel with largest deposition)
- Considered other architectures (e.g. analog summing but penalty in minimum threshold)

The readout channel

Individual pixel hit information, possibility to mask pixels

Charge sensitive amplifier

Charge sensitive amplifier

Equalized (3bits)=15e⁻ r.m.s.

Minimum detectable charge=230e⁻

Slope=16MV/s (Jitter=noise/slope~0.4ns (@1ke-))

Comparator under study

Strip working modes

- Configuration
- Acquisition
 - 8 bits ToA, 5 bits ToT, individual hit information (8 bits)
 - ToT clock is generated by dividing the ToA clock (/2, /4, /8, /16 i.e. 50MHz, 25MHz, 12.5MHz or 6.25MHz)
 - 13 bits ToA, individual hit information (8 bits)
 - 13 bits hit counting (mainly for threshold equalization purposes)
- Readout
 - Zero compression is available

Chip sensitive area

Readout

- Readout frequency 40Mhz, 8b/10b encoding
- Zero compression can be enabled
 - No compression:
 - 21 bits are read out per strip
 - Compressed readout at pixel level:
 - 22 bits are read out for hit strips. 1 bit read out for strips that are not hit
 - Compressed readout at strip and column level:
 - 1 bit is read out for the columns that are not hit

	Data per frame *		Readout time	
	With hit map (21 bits/pixel)	Without hit map (13 bits/pixel)	With hit map (24 bits/pixel)	Without hit map (14 bits/pixel)
No compression	43 kbits	26.6 kbits	1.34ms	831us
Pixel compression	3.3 kbits	2.78kbits	103us	87us
Pixel and column compression	3.2 kbits	2.78kbits	100us	87us

^{*} Calculated assuming an occupancy of 3%, and a matrix area of $4.8 \times 3.84~mm^2$ (16×128 pixels) The readout time is calculated assuming a readout at 40 MHz and 8b/10b encoding

Chip periphery

Summary and conclusions

- The CLICTD design status has been presented
- The design is done in TJ 180nm (monolithic) and using the "modified" process
- The chip sensitive area contains 128 rows and 16 columns of detector elements
- The detector channels are organized in segmented strips of 30μmx300μm measuring 8 bit ToA (10ns bin), 5 bit ToT and the individual pixel hit information (8 bits)
- The front-end has a gain of 160mV/ke⁻, noise of 35e⁻, minimum detectable charge 230e⁻, fast timing characteristics and a power consumption of 2.16μW/strip
- The readout clock frequency will be 40MHz

2d TCAD simulation / electric field for different pitch

Particle incident pixel edge (worst case):

 Shift of time pulse needs to reach maximum differs by ~ 1 ns if we go from 10 to 8 sub pixels.