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The Higgs self-interaction

Measuring the Higgs self-interactions is an essential step to understand
the structure of the Higgs potential
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» distortions expected in many BSM scenarios
» related to order of EVWV phase transition (relevant for cosmology)

» limrted precision at LHC due to small statistics A3 € [0,2] at 1o
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Measuring the Higgs self-interactions is an essential step to understand
the structure of the Higgs potential
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» distortions expected in many BSM scenarios
» related to order of EVWV phase transition (relevant for cosmology)

» limrted precision at LHC due to small statistics A3 € [0,2] at 1o

+ at high-energy lepton machines accessible M}
mainly in HH production ;

+ additional bonus: test strength of Higgs o -
couplings at high energy (VVHH coupling) i/g




Main double-Higgs channels

0.5 | ' | ' [ ' I
P(e™,et) = (-0.8,+0.3) /.
0.4 eTe” — Zhh ///—
—I_WO maln Channe S 0l ete™ — vvhh (WW-fusion only) //// |
_ & /
ZHH and vIHH-
0.1+
0.0 £ 4——/|’/./ L

~ ! I ! I
400 600 800 1000 1200 1400
Vs |GeV]



Main double-Higgs channels

Two main channels
/HH and vvHE
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Sensitivity to Higgs self-coupling

he two channels provide complementary information

+ /HH gives stronger constraints on 0A3z > 0

+ vVHH gives stronger constraints on 0Az < 0
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» dependence on 0As stronger at lower COM energy, maybe worth
collecting more luminosity at CLIC |.4 TeV




Precision reach at CLIC

CLIC 1.4 TeV (1.5 ab™ 1) + 3 TeV (2 ab™ 1), unpolarized beams, ete™ — vishh
bounds on 0k 68% CL 95% CL
CLIC 1.4 TeV -0.35, 1.51] 0.60, 1.76)

CLIC 3 TeV 0.26,0.50] U [0.81, 1.56] —0.46,1.76
CLIC combined —0.22,0.36] U [0.90, 1.46] —0.39, 1.63]
+Zhh 0.22,0.34] U [1.07, 1.28)] —0.39, 1.56]

Precision at CLIC ~25% at 68% CL (combining 1.4TeV and 3TeV runs)

... but Inclusive measurements at CLIC can not resolve the additional
minimum at d\; ~ 1

+ /HH helps to test the second minimum, but has impact
(due to small cross section)

Addrtional improvement:

» consider differential distributions



Differential HH distributions

The Higgs trilinear coupling strongly modifies the distributions

CLIC 1.4 TeV, e'e">vVvhh

CLIC 3 TeV, e'e">vVvhh
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» differential analysis can exclude the second minimum
bounds on k) 68% CL 95% CL
CLIC inclusive -0.22,0.34] U [1.07, 1.28] -0.39, 1.56
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4 bins in vvhh [—0.18, 0.30] —0.33,1.11]




Help from Single Higgs!?



Self-Interaction from Single Higgs

Higgs self-interaction can be also probed

indirectly through single-Higgs processes E\Qh Ez@h
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Single Higgs global analysis

Corrections to Higgs trilinear are usually not alone: accompanied by
modifications of single Higgs couplings

global analysis is needed!
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Several couplings can affect single-Higgs production

Minimal set in the Warsaw basis: | 2 operators
 Higgs couplings to gauge bosons  dc., c.., c.O, cz ., Cyvy, Cgg
o Yukawa's dy:, dyb, 0Yc 0Yr, Oy,

e triple gauge couplings A,



Single Higgs global analysis
All the |2 operators can be well constrained by a global fit

Higgs self interaction can also be added to the list: |2+ 1| operators

» can be distinguished thanks to different impact on various processes

linear dependences of observables to parameters 6k,, 6Cz, €77, Cza
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Single Higgs global analysis

+ Single-Higgs channels are important for low-energy colliders

eg. combination of 240 GeV and 350 GeV can lead to ~507% precision
on Higgs trilinear

Further improvement with combination with HL-LHC
(helps to lift additional HL-LHC minimum at dA3 ~ 5)
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Single Higgs global analysis

+ Single-Higgs channels have a small impact on high-energy colliders
that can access double-Higgs production
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Global analysis still important to assess robustness of the result

" ILC
O\ g
- N sy /
eg. |ILC determination of dAs ol
s affected if single-Higgs 4,
precision is modified 2
0:

05 10

rescaled
single-Higgs precision



Comparison of different colliders



Reach at different colliders

-2

bounds on ok, from EFT global fit
—1 0 1 2

LA L L L Y L S L S S
4 68%,95%CL bounds, lepton collider only

B 68%,95%CL bounds, combined with HL-LHC
XXX XXX 88% GL bounds (combined with HL-LHC)

—XXX +X:XX Q5%
- = 68%,95%CL bounds, 1h only (w/ HL-LHC 1h)

+1.26
+6.05

HL-LHC
CEPC and FCC-ee CEPC
. g &
can reach ~40% precision @.
ILC

Combined global fit
at ILC or CLIC

can reach ~20% precision
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and select “correct’” minimum
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14TeV(3/ab), rates & distributions

240GeV(5/ab) only (CEPC)
240GeV(5/ab)+350GeV(200/fb)

240GeV(5/ab)+350GeV(1.5/ab) (FCC-ee)
FCC-ee with zero aTGCs

250GeV(2/ab) only
250GeV(2/ab)+350GeV(200/fb)
above + 500GeV(4/ab)

above + 1TeV(2/ab)

350GeV(500/fb)+1.4TeV(1.5/ab)+3TeV(2/ab)
+ Zhh at 1.4 TeV
binned M, in vvhh (4 bins)



Conclusions



Conclusions

Lepton colliders allow to measure the Higgs trilinear self-coupling

+ first “precision” determination (only O(1) possible at HL-LHC)
+ VBF main channel at high-energy machines (COM > | TeV)

+ differential distributions useful to Improve measurement
(remove additional minimum in the fit)

+ CLIC could reach a ~25% precision at 68% CL
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