

Top Pair Production at 1.4TeV

Rickard Ström¹, Alasdair Winter², **Nigel Watson²** ¹CERN, ²University of Birmingham CLIC Workshop 2018, CERN

Motivation

- $t\bar{t}$ production, examine directly coupling of t to Z, γ
- Sub-percent precision on anomalous EW couplings
 - Greater sensitivity to new physics than from direct searches

$$\Gamma_{\mu}^{t\bar{t}X}(k^2, q, \bar{q}) = ie\left\{\gamma_{\mu}(F_{1V}^X(k^2) + \gamma_5 F_{1A}^X(k^2)) - \frac{\sigma_{\mu\nu}}{2m_t}(q + \bar{q})^{\nu}(iF_{2V}^X(k^2) + \gamma_5 F_{2A}^X(k^2))\right\}$$

- Extraction of form factors needs input from multiple measurements, e.g. cross-section, asymmetries, ...
 - See Ignacio Garcia's talk for details

Analysis Strategy

- Semileptonic $t\bar{t}$ decays
 - Ideal for measuring A_{FB}
- Charge tagging from leptonic decay
- Production angle from hadronic decay provides good resolution on the top

- Traditionally, use **b**-tag to identify events
 - Less effective at 1.4TeV highly boosted decay systems

b

N

- Two alternative approaches investigated
 - "Top tagger"- Rickard Ström
 - "Jet substructure"- Alasdair Winter

Focus of this talk

25-Jan-2018 / CERN

Identified W and b-jet systems

Transverse momentum (GeV)

Typical event W1 W2 nonW 200 150 100 50 0 0.8 0.6 0.2

25-Jan-2018 / CERN

Efficiency for top tagger

25-Jan-2018 / CERN

Event Reconstruction

- 7 objects to be reconstructed:
 - 2 b-jets from initial top decays
 - 2 quarks-jets from hadronic W decay
 - Charged lepton and neutrino
 - Photon(s) from ISR/Beamsstrahlung
- For $\sqrt{s} \gg$ threshold
 - top decay products highly collimated
 - Harder to resolve individual quark jets
- Approach used, cluster PFOs into "fat" jets
 - hadronic top and the b-jet from the leptonic side

b

W

• Use large ISR/BS to measure differential in $\sqrt{S'}$

Lepton Finding

- Identify 1 charged lepton/event, **exclude** from fat-jet clustering
- Five stage approach based on Particle-ID and isolation
 - Cluster all PFOs into **5 jets** using ee kt algorithm
 - Take **e**, *μ* candidates >10GeV from Pandora PID
 - Ratio of energy each **candidate/jet** it is clustered into
 - \rightarrow isolation metric
 - Most isolated candidate selected as lepton from W decay
 - Relax candidate energy as necessary
- Charge tagging efficiencies/event
 - 96% muons, 93% electron

Fat Jet Reconstruction

- Remaining PFOs are clustered into **two fat jets** using Valencia Algorithm with R=1.5, β =1, γ =1
- Higher energy assigned as hadronic top decay
- Other fat jet considered the **b-jet** from the **leptonic** decay

Fat Jet Performance

• Fat jet gives **production angle** for each event

- Angle flipped by π where fat jet energy unreliable for the choosing hadronic top
- Artefact of detector acceptance near acceptance limits
 Nigel Watson, CLIC Workshop 2018
 25-Jan-2018 / CERN

$\sqrt{s'}$ Reconstruction

- Associate missing energy with photon(s) and neutrino
- Use constrained kinematic fit MarlinKinFit v00-03
- 5 fit objects: lepton, neutrino, 2 fat jets, photon
- 6 constraints: total four momentum, W mass, $\Delta M_{top-antitop}$
- Resolution parameters
 - $\sigma_{Jet \ Energy} = 35\% \sqrt{E}$
 - $\sigma_{EM Energy} = 20\% \sqrt{E}$
 - $\sigma_{\theta/\phi} = 10\%$
- $\sqrt{s'} = E_{Top} + E_{antitop}$

$\sqrt{s'}$ Reconstruction

- Reconstructed $\sqrt{S'}$ reproduces true distribution
 - Resolution ~75GeV

Quality Cuts

- Remove events where reconstruction fails
- Cut on angular acceptance ($|\cos\theta_{Top}| < 0.9$), lepton charge, top mass, event kinematics, jet resolution parameters, angular separation of W and b jets within the fat jet

MVA Selection

- 2 BDTs to classify events
 - highly boosted topology (E>1350GeV)
 - lower energy events (E<1350GeV)
- Inputs include
 - kinematics of the tops, lepton and b jet
 - number of e/μ candidates with E>30GeV
 - event shape and b-tagging information
- Several jet substructure variables also used
 - NSubjettiness
 - Jet multiplicity
 - Angles between subjets when reclustering the fat jet into 3 subjets (kt algorithm, R=0.3)

Process	Cross section (fb)	Selection Efficiency (%)	Events for 1.5ab ⁻¹ (x10 ³)
ee \rightarrow tt \rightarrow qqqqlv, l=e/u/ τ (includes leptonic τ decays)	51.2	31.6	24.3
ee \rightarrow tt \rightarrow qqqq τ v, (only includes hadronic τ decays)	14.0	10.1	2.1
$ee \rightarrow qqqqlv$, single top	46.3	8.9	6.2
ee→qqqqlv, no top	30.8	1.2	0.54
qqqqqq	113	0.5	0.76
qq	4840	0.02	1.5
qqvv	1400	0.0026	0.05
qqlv	6980	0.0024	0.25
qqll	2680	0.0039	0.16
qqqq	2300	0.014	0.47
qqqqll	71.7	0.091	0.1
qqqqvv	24.7	0.12	0.05

16

Signal Efficiency, E>1200 GeV

- Uniform ~50% efficiency in central region
- Reduced efficiency in forward region
 - Poor reconstruction of signal events
 - More forward peaked backgrounds

Nigel Watson, CLIC Workshop 2018

A_{FB} Extraction

• A_{FB} extracted using¹

 $\frac{d\sigma}{dCos\theta} = \frac{3}{8} (1 + \cos^2 \theta) \sigma_U + \frac{3}{4} (\sin^2 \theta) \sigma_L + A_{FB} \cos \theta \sigma_{Tot}$ [J. Jersak, E. Laermann and P.M. Zerwas, *Phys. Lett.* **98** B (1981) 363 and *Phys.* Rev. D **25** (1982) 1218]

- σ_U , σ_L , σ_{Tot} are unpolarised, longitudinally polarised and total cross-sections
- Before fitting, signal corrected for efficiency bin-by-bin in $\cos\theta$
- Use k=2 folding, evaluate the signal efficiency in statistically independent samples
- Stat. uncertainty evaluated assuming background subtraction from MC
 - Assign systematic from uncertainty in normalisation and shape

Fit results

Nigel Watson, CLIC Workshop 2018

From top tagger

25-Jan-2018 / CERN

Systematic uncertainties

- Fit results assume residual backgrounds are modelled with arbitrarily small uncertainty
- Estimate systematic from limited knowledge of **accepted** background cross sections
- Evaluate impact in worst case scenario- correlated shift in all backgrounds
 - To do artificially introduce asymmetry to shape of background

Assumed uncertainty on background normalisation (%)	Systematic uncertainty A _{FB} for E>1.2TeV (%)	
2.5	0.6	
5	1.2	
7	1.8	
10	2.4	

- LEP-2 indicative normalisation uncertainty on 4-jet background in WW→4q was 5%
- Even with this conservative estimate of background uncertainty statistical uncertainty on A_{FB} ~2% dominates

21

Summary & Outlook

- Two analyses developed in parallel
 - 3 TeV, 1.4 TeV and 1.4 TeV (radiative)
- Statistical uncertainty of ~2% on A_{FB} at 1.4 TeV (1.5ab⁻¹)
 - Both analyses consistent at 1.4 TeV
- First look at systematics (background normalisation)
 - Precision of A_{FB} ~dominated by statistical uncertainty
- Other potential systematics
 - Luminosity
 - Background shape
 - Beam polarisation
- Next: Finish paper draft + publish

Backup Slides

Nigel Watson, CLIC Workshop 2018

23

Signal Efficiency Correction

- 1. Split events into two samples- A and B
- 2. Train BDTs with sample A and test with B
- 3. Evaluate signal efficiencies in both $\cos\theta$ and energy post event selection using sample B
- 4. Train new BDTs with sample B and test with A
- 5. Evaluate AFB for sample A
- 6. Use results of step 3 to correct AFB measurement by performing bin by bin scaling by efficiency

- Limited by MC sample size
- Can always generate more events to reduce purely statistical uncertainty
- Consider background uncertainties as a systematic effects Nigel Watson, CLIC Workshop 2018

J. Fleisher et al, 2003, <u>https://arxiv.org/pdf/hep-ph/0302259.pdf</u>

25-Jan-2018 / CERN

Quality Cuts

- Preselection Cuts (pre-existing to remove background events):
 - Visible Pt>200 GeV
 - Hadronic Top Energy>100 GeV
 - Leptonic B Jet Pt>20 GeV
 - $-\log(y_{23}) \le 7 \&\& -\log(y_{34}) \le 9$
 - $|(\text{Top } \cos\theta)| < 0.9$
- Quality Cuts:
 - Hadronic Top Mass>100 GeV
 - Hadronic Top Pt>100 GeV
 - Leptonic B Jet Mass<100 GeV
 - 0.2<Collinearity of highest and next highest energy subjets<0.8
 - $-\log(Y23) > 3$
 - Pz Constraint from fit<100 GeV
- Currently use same cuts across full energy range
 - Scope to further optimise as some variables are energy dependent

Variables currently used to train BDT

- Visible Energy and Pt
- Hadronic Fat Jet Energy and Pt
- Leptonic Fat Jet Mass
- Leptonic 1SubJettiness, 1SubJettiness/2SubJettiness
- Relative angle of the 3 subjets within hadronic fat jet
- Isolated lepton Energy, Pt and total momentum
- N Lepton candidates with E>30GeV
- Angular separation between lepton and hadronic fat jet
- $-\log(y_{23})$
- Major thrust
- Leptonic Top Energy
- Highest and next to highest btags

Signal Efficiency, 900GeV<E<1200GeV

25-Jan-2018 / CERN

Signal Efficiency, 400GeV<E<900GeV

Theta Distribution After each Stage of cuts at E>1.2TeV

Nigel Watson, CLIC Workshop 2018

Fit results

Nigel Watson, CLIC Workshop 2018