

130

DESY

0

MINATV 0596

CA.MT

CLEAR

Plasma Lens Experiment

A scientific collaboration between

The CLEAR plasma lens experiment – overview and results

CLIC Workshop - Jan 24, 2018

Carl A. Lindstrøm

PhD Student University of Oslo, Department of Physics

Active plasma lenses

CERN

What is an active plasma lens?

- Focusing in both planes simultaneously.
- Maxwell equations require a **longitudinal current density** to have azimuthal focusing.
- We can use a plasma to conduct a large current parallel to the beam as it passes.
 - => Uniform current density = an ideal/linear lens
- Can be up to 100 times stronger than conventional quadrupoles! (3500 T/m vs ~30 T/m)

Aberrations and emittance growth

1. Uneven plasma heating => Non-uniform current density

- Large currents heat the plasma, but unevenly (colder close to the walls).
- High temperature plasma conducts current better
 => more current in the center.

2. "Passive" plasma lensing => Additional beam self-focusing

- Typically the beam transverse size is much larger in the lens than in the PWFA cell.
- However, if the electron beam is too intense, there will be a strong plasma wakefield.

The CLEAR* plasma lens experiment⁺

- Several groups worldwide are investigating the active plasma lens (LBNL, INFN, DESY and CERN)
- We⁺ are conducting an experiment at the CLEAR* user facility at CERN.
- Three experimental goals:
 - Demonstrate successful lensing with a new "low-cost" design*
 - Measure directly any spherical aberration from plasma heating
 - Probe limits set by plasma wakefields

* CERN Linear Electron Accelerator for Research

⁺ C. A. Lindstrøm, K. N. Sjøbæk, <u>E. Adli (PI)</u> from the University of Oslo and CERN (W. Farabolini, D. Gamba, R. Corsini), with collaborators from DESY (J.-H. Röckemann, L. Schaper, J. Osterhoff) and Uni Oxford (A. Dyson, S. Hooker)

UNIVERSITY

Experimental setup

The CLEAR user facility at CERN

- Photocathode with S-band RF structures
- Previously used as the CTF3 witness injector
- Provides a tightly focused beam to the plasma lens experiment.

Range
50–220 MeV
1–1500 pC
~3 µm (for 50 pC), ~20 µm (for 400 pC)
300–1200 µm

Small size, but many subsystems

Beam direction

Beam direction

5 subsystems:

Capillary and mount

provided by

Gas flow Vacuum and beam windows

High voltage source

Beam diagnostics

Sapphire capillary and mount

- 1 mm diameter half-tubes milled from two blocks of sapphire (3 x 15 x 20 mm³)
- Polyether ether ketone (PEEK) UVH compatible, insulating plastic used for mount.
- Rubber gaskets for leak-tight internal gas flow.
- Folded Kapton-sheet inside the gas inlet to stop internal discharging.
- Copper electrodes connected to HV source.

Gas flow

- Argon/helium bottles outside the accelerator hall.
- Remotely controlled needle valve (1-1000 mbar):
 typically operated at 5-30 mbar capillary pressure
- Buffer volume with pressure gauge in feedback loop.
- Long (2 m) polyurethane pipe inside vacuum for electrical insulation (to avoid spark to ground).

Vacuum and beam windows

- A large turbo pump (700 l/s) installed on top of the chamber. Usually achieves a vacuum of 10⁻⁸ mbar.
- A scroll pump is connected in series to keep a fore vacuum of 0.1 mbar.
- 8 µm polymer foil (Kapton) installed in an insertable gate valve just upstream (20 cm) to spare the photocathode.

High voltage, high current source

- Compact Marx Bank, provided by collaborators at Uni Oxford.
- 10 rungs of 45 nF capacitors, discharging via spark gaps.
- Supplies a \sim 300 ns pulse of \sim 20 kV and \sim 500 A.
- Current ingoing and outgoing measured using two current pulse transformer (Pearson probes)

Beam diagnostics

- OTR screen downstream (30 cm) to measure beam size and offset, with blinder foil to stop plasma light.
- Mini-OTR wedge mounted on capillary to measure incoming beam size (destructive measurement).
- YAG screen just before the dump (~3 m downstream), as well as BPMs upstream and downstream.

15

Experimental results

.

16

Successful lensing

17

18

UNIVERSITY

Evidence of passive plasma lensing

Used an offset beam in the lens to decouple passive and active plasma lensing

(preliminary data analysis)

Evidence of passive plasma lensing

Used an offset beam in the lens to decouple passive and active plasma lensing

(preliminary data analysis)

CLEAR plasma lens experiment (overview and results) - Carl A. Lindstrøm - Jan 24, 2018

Outlook and future work

Good news and bad news

• Good news: Less geometric aberration from plasma heating than feared.

- Bad news: Plasma wakefields will distort intense beams non-ideal for collider parameters.
- However, OK if beam size is large enough (but low emittance implies huge beta functions of 10⁴-10⁶ m)
 ⇒ May (?) be used as an alternative for the final doublet with focusing in both planes, low chromaticity

Ongoing experiments in CLEAR (2018)

- The CLEAR beam line is currently being upgraded to allow new measurements
- **Goal #1:** verify negligible emittance growth with quad scans
- Goal #2: scan large parts of the beam/ plasma parameter space for wakefield distortion

"Full" 4D beam+plasma parameter space

In summary

- The promising active plasma lenses is under study at the CLEAR User Facility.
- Although small, a plasma lens requires several subsystems to work together.
- Preliminary results show no evidence of aberrations due to plasma heating, and clear evidence of plasma wakefield distortion.
- Further experiments at CLEAR in 2018 are underway.

Thanks for listening!

.....