

Measurement of (anti-) ³He elliptic flow in Pb-Pb collisions and of (anti-) ³He production in p-Pb collisions with ALICE at the LHC

A. Calivà¹ and S. Hornung^{1,2} for the ALICE Collaboration

¹ GSI Helmholtz Center for Heavy Ion Research GmbH ² Heidelberg University

E-mail: alberto.caliva@cern.ch, sebastian.hornung@cern.ch

Physics motivation

Study production mechanism of ³He in high-energy hadronic collisions by comparing results from different collision systems to existing models

- Test predictions on the elliptic flow of ³He in Pb-Pb collisions from coalescence [1] and Blast-Wave (BW) model [2].
- Add constraints to coalescence approach by measuring 3 He production, 3 He/p and B_{3} vs. multiplicity in p-Pb collisions

Secondary ³He from material

Secondary ³He produced by spallation in interactions between high-energy particles and the detector material

Experimentally separated using the distance to closest approach (DCA) of the ³He track to the primary vertex

Contribution from secondary ³He negligible (<0.3%) for p_{T} > 2 (3) GeV/c in p-Pb (Pb-Pb) collisions

Results: v₂ in Pb-Pb collisions

Elliptic flow of ³He measured in Pb-Pb collisions for the first time

Heaviest baryon whose flow is measured

 $n_{\rm q}$ -scaling is violated for all charged particles (observed also for deuterons in Pb-Pb collisions at 2.76 TeV [3]).

Coalescence predictions and BW based on π , K, p fail to describe the measured v_2 of 3He

³He identification

³He identification using the d*E*/d*x* measured by the Time Projection Chamber (TPC)

Excellent separation from other particle species

Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

p/z (GeV/*c*)

Contribution of tritons relevant only at low rigidity > Described using (skewed) gaussian fit

Elliptic flow measurement

³He elliptic flow in Pb-Pb collisions measured using the Event Plane (EP) method

$$v_{2}\left(p_{\mathrm{T}}\right) = \frac{\pi}{4R_{2}} \frac{N_{in-plane}\left(p_{\mathrm{T}}\right) - N_{out-plane}\left(p_{\mathrm{T}}\right)}{N_{in-plane}\left(p_{\mathrm{T}}\right) + N_{out-plane}\left(p_{\mathrm{T}}\right)}$$

Event plane angle measured by two forward scintillators:

• V0-A: $2.8 < \eta < 5.1$

• V0-C: $-3.7 < \eta < -1.7$

 R_2 = resolution of the event plane angle measurement \rightarrow using the three sub-events method ($\eta_{TPC} > 0$, $\eta_{TPC} < 0$, V0)

Results: ³He vs. multiplicity in p-Pb collisions

³He measured in 4 multiplicity classes

→ ³He/³He consistent with 1 within uncertainties

Coalescence parameter B₃:

- \triangleright Increases vs. p_T/A
- Decreases with increasing multiplicity

³He/p increases with multiplicity

Qualitatively explained by coalescence

References

- [1] J. I. Kapusta, Phys. Rev. **C21**, 1301 (1980).
- [2] E. Schnedermann et al., Phys. Rev. C48, 2462 (1993).

[3] S. Acharya (The ALICE Collaboration), Eur. Phys. J. **C77**, 658 (2017).