Physics motivation
Study production mechanism of 3He in high-energy hadronic collisions by comparing results from different collision systems to existing models

- Test predictions on the elliptic flow of 3He in Pb-Pb collisions from coalescence [1] and Blast-Wave (BW) model [2].
- Add constraints to coalescence approach by measuring 3He production, 3He/p and B_3 vs. multiplicity in p-Pb collisions

3He identification
3He identification using the dE/dx measured by the Time Projection Chamber (TPC)

- Excellent separation from other particle species

Secondary 3He from material
Secondary 3He produced by spallation in interactions between high-energy particles and the detector material

- Experimentally separated using the distance to closest approach (DCA) of the 3He track to the primary vertex

Results: v_2 in Pb-Pb collisions
Elliptic flow of 3He measured in Pb-Pb collisions for the first time

- Heaviest baryon whose flow is measured
- n_q-scaling is violated for all charged particles (observed also for deuterons in Pb-Pb collisions at 2.76 TeV [3]).

Results: 3He vs. multiplicity in p-Pb collisions
3He measured in 4 multiplicity classes

- 3He/2He consistent with 1 within uncertainties
- Coalescence parameter B_3: 3He consistent with 1 within uncertainties
- 3He/p increases with multiplicity
- Qualitatively explained by coalescence

References