Multiplicity dependence of strangeness production in proton-proton collisions at $\sqrt{s} = 5.02$ TeV with ALICE at the LHC

Lukáš Tropp* on behalf of the ALICE Collaboration Pavol Jozef Šafárik University, Košice, Slovakia

Introduction and Physics motivations

• A-A collisions: evolution and QGP

Reaching sufficient high energy densities ($\varepsilon \sim 1 \text{ GeV/fm}^3$), it becomes possible to create a state of partonic matter, the so-called Quark-Gluon Plasma, where quarks and gluons are not confined in hadrons. [1]

Strangeness enhancement

ALICE

Higher yields per participant nucleon for strange and multi-strange particles relative to those in pp collisions has been predicted as a signature for QGP. [1]

s quarks are not present as valence quarks in ordinary matter, but since their mass after partial chiral

Importance of pp collisions

Proton-proton collisions have been used extensively as a reference for the study of interactions of larger colliding systems at the LHC. The systematic study of identified particle production as a function of charged particle multiplicity in pp has demonstrated to provide further insights into dynamics of small systems.

restoration (~ 150 MeV/c²) is comparable with QGP temperature (T \ge 160 MeV) they can be abundantly produced in thermal processes like $g\overline{g} \rightarrow s\overline{s}$ or $q\overline{q} \rightarrow s\overline{s}$.

<u>Measuring strange particles in ALICE</u>

• VZERO [V0A(2.8<η <5.1)&V0C(-3.7<η<-1.7)]

- triggering, beam gas rejection
- centrality (Pb-Pb) and multiplicity
- (pp, p-Pb) class determination

Low material budget in the central region (13% X/X₀ for ITS+TPC), good momentum resolution (~1.5%)@ $p_T = 0.1 - 20$ GeV/c [2]

- Time Projection Chamber (TPC, $I\eta I < 0.9$)
- main tracking detector
- momentum measurement
- $0.1 \text{ GeV/c} < p_T < 100 \text{ GeV/c}$
- particle identification (dE/dx) resolution is ~7% in central Pb-Pb collisions
- Inner Tracking system (ITS, $I\eta I < 0.9$)
- tracking and vertexing
- vertex resolution better than 100 μ m

Candidates are reconstructed via their decay topology, through the following steps:

- 1. charged tracks are reconstructed in the ITS and TPC
- 2. specific ionisation (in the TPC) is used to identify daughter particles
- 3. candidates are selected combining reconstructed tracks and applying loose cuts on geometry and kinematics
- 4. selection cuts are finally tightened to reduce background at the analysis level
- 5. invariant mass spectrum of the candidates is used for signal extraction

Sample

• **pp**: about 180×10^6 minimum bias collisions at $\sqrt{s} = 5.02$ TeV taken in 2015

Signal extraction

- polynomial+gaussian fit of the signal region in invariant
- mass region to extract the value of the mean and σ
- 2. bin counting in the signal region $(\pm 3 \sigma)$
- fit background sampled on both sides of the signal region
- 4. integral of background fit function in the signal region

V⁰ - neutral particle decaying weakly into a pair of charged particles Cascades - decay of charged particle into one charged and V⁰ particle V⁰s and Cascades decaying modes :

1.4.1.4	1
$K_S^0 \rightarrow \pi^+ + \pi^-$	B.R. : 69.2 %
$\Lambda \rightarrow p + \pi^{-}$	B.R. : 63.9 %
$\Xi^- \rightarrow \Lambda + \pi^-$	B.R. : 99.9 %
$\Omega \to \Lambda + K^{-}$	B.R. : 67.8 %
A. P. A. P. P. A.	'

RESULTS

[1] J. Rafelski and B. Müller, PRL48, 1066 (1982); [2] [The ALICE Collaboration et. al. 2008 JINST 3 S08002]; [3] P. Skands, S. Carraza, J. Rojo, 1434-6052, (2014)

* lukas.tropp@cern.ch