Rapidity- and azimuthally-dependent femtoscopy
with charged pions in $p+\mathbf{P b}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with ATLAS

Michael (Felix) Clark, Brian Cole

d. Columbia University

 IN THE CITY OF NEW YORK

Introduction

Signatures of collective behavior are observed in azimutha harmonics v_{n} even in small systems ($p p$ and $p+\mathrm{Pb}$)
Collectivity can be probed by measuring the geometry of particle production (e.g. in collective expansion, the freeze-out size decreases with rising k_{T})
The freeze-out source can be probed through the 2-particle correlation function

$$
\begin{equation*}
C_{\mathbf{k}}(q)=\int d^{3} r S_{\mathbf{k}}(r)\left|\psi_{q}(r)\right|^{2} \tag{1}
\end{equation*}
$$

where $k=\left(p_{1}+p_{2}\right) / 2$ is the average pair momentum and $q=\left(p_{1}-p_{2}\right)$ is the relative momentum.
$C_{\mathbf{k}}(q)$ is fit to a function to get length scales of $S_{\mathbf{k}}(r)$, which are referred to as the HBT radii.
The experimental correlation function is

$$
\begin{equation*}
C(q)=\left[1-\lambda+\lambda K(q) C_{\mathrm{BE}}(q)\right] \Omega(q), \tag{2}
\end{equation*}
$$

where K is the Coulomb correction, C_{BE} is the Bose-Einstein correlation, and Ω represents background correlations.
use "out-side-long" coordinate system
$q_{\text {out }}$ along k_{T}
$q_{\text {side }}$: other transverse component
$q_{\text {long: }}$: longitudinal component in longitudinal rest frame of pair
The 3D BE correlation is fit to a function of the form

$$
\begin{equation*}
C_{\mathrm{BE}}(\mathbf{q})=1+e^{-\|R \mathbf{q}\|}, \tag{3}
\end{equation*}
$$

where R is a symmetric matrix

$$
R=\left(\begin{array}{ccc}
R_{\text {out }} & R_{\mathrm{os}} & R_{\mathrm{ol}} \\
R_{\mathrm{os}} & R_{\text {side }} & 0 \\
R_{\mathrm{ol}} & 0 & R_{\text {long }}
\end{array}\right)
$$

with $R_{\mathrm{ol}} \neq 0$ in the rapidity-dependent analysis and $R_{\mathrm{os}} \neq 0$ in the azimuthal analysis.

Pion identification

The wavefunction in Eqn. 1 has particularly good resolving power if there is $B E$ enhancement.
Identical pions are identified using ionization energy loss in pixel clusters.

Figure 1: The pion pair purity as a function of k_{T} and rapidity $y_{\pi \pi}^{\star}$

Jet fragmentation background

The presence of hard processes in the collisions causes correlations to arise from the mini-jet fragmentation. The relationship between same-charge and opposite-charged jet correlations is studied in Pythia8.
The opposite-charge data is used to constrain the same-sign jet contribution.

Figure 2: The opposite-charge data (teal) is fit to a function (blue dashed). The parameters of this fit are used to fix the fragmentation description (violet dotted) in the same-charge data (red). The remaining parameters are fit to the same-charge data (dark red line).

Figure 4: The transverse HBT radii $R_{\text {out }}$ (left), $R_{\text {side }}$ (right) as a function of pair transverse momentum k_{T}.

Figure 5: The HBT radii $R_{\text {side }}$ (left), and $R_{\text {long }}$ (right) as a function of pair rapidity $y_{\pi \pi}^{\star}$.

Figure 6: The HBT radii $R_{\text {out }}$ (left) and $R_{\text {long }}$ (right) as a function of local multiplicity $\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} y^{\star}$.

Combinations and off-diagonal radii

Figure 7: The ratio $R_{\text {out }} / R_{\text {side }}$ (left) indicates the explosiveness of the event, because $R_{\text {out }}$ couples directly to the lifetime while $R_{\text {side }}$ does not. At low k_{T} the transverse area element $R_{\text {out }} R_{\text {side }}$ (right) scales linearly with multiplicity, indicating constant transverse area density.

Figure 8: The cross-term $R_{\text {ol }}$ is observed to be distinct from 0 in the proton-going side of central events, with a combined significance of 5.1σ at $-1<y_{\pi \pi}^{\star}$ in the $0-1 \%$ centrality interval. This indicates longitudinal and transverse expansion and a breaking of boost invariance.

Azimuthal dependence

The correlation functions are measured in intervals of azimuthal angle ϕ_{k} with respect to the 2 nd-order event plane Ψ_{2}. The maindiagonal HBT radii are fit to a function which allows extraction of their 2nd-order Fourier coefficients,

$$
\begin{equation*}
R_{i}=R_{i, 0}+2 R_{i, 2} \cos \left[2\left(\phi_{k}-\Psi_{2}\right)\right] . \tag{4}
\end{equation*}
$$

Figure 9: The transverse radii $R_{\text {out }}$ (left) and $R_{\text {side }}$ (right) as a function of azimuthal angle with respect to the 2nd-order event plane Ψ_{2}

Figure 10: The normalized 2nd-order cosine Fourier components of the transverse radii $R_{\text {out }}$ (left) and $R_{\text {side }}$ (right) as a function of flow vector magnitude $\left|\vec{q}_{2}\right|$.

Highlighted observations

Radii in central events show a decrease with rising k_{T}, which is qualitatively consistent with collective expansion. This trend is diminished in peripheral events.
Within uncertainties, each HBT radius depends only on the local multiplicity $\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} y^{\star}$.

Evidence for a non-zero (positive) R_{ol} is observed on the proton-going side of central events

The transverse shape of the freeze-out surface is consistent with short-lived hydrodynamic expansion in central events.

References

ATLAS Collaboration, Femtoscopy with identified charged pions in proton-lead collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with ATLAS, Phys. Rev. C 96, (2017) 064908
ATLAS Collaboration, Azimuthal femtoscopy in central protonlead collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with ATLAS, ATLAS-CONF-2017-008, http://cdsweb.cern.ch/record/2244818

