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Abstract

Results on azimuthal anisotropies in the particle production
from p+p and p/d/3He+A at LHC and RHIC have raised the

v2(pr) and v3(pr) in Small Systems

describe the measured
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measured in the central arms at midrapidity. scattering is turned on, the parton plane
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Conclusion
The small systems geometry scan shows matched ordering of <{e,) to v,(pr) and a simultaneous description of v (pr) and v3(pr) by hydrodynamics. This suggests the

presence of a strongly coupled fluid in small systems. v (pr) is measured at all energies in the beam energy scan in d+Au. Nonflow contributions are more prominent at

lower energies. 1»(#) is measured as an asymmetric signal. The shape is similar for all energies at # > 0. Combination of flow and non-flow is not simply additive.
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